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Abstract

This is the typed notes of a lecture given in Bielefeld starting from Winter 2025/2026,
as a follow-up to the course Higher categories and algebraic K-theory III| taught by Fabian
Hebestreit. Their goal is to explain a modern point of view on THH, and more generally
V-linear Hochschild homology through higher (enriched) category theory.

In a second time, we build a bridge between the material of this course and the previous
one, by investigating the relationship between algebraic K-theory and topological Hochschild
homology, a subject which is often called “trace methods”.
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The main character of these notes is THH, topological Hochschild homology, a spectrum which
can be associated to a ring, a ring spectrum, a stable category with even suitable coefficients. THH
is a very rich object: it enjoys an interesting functoriality, has plenty of mysterious extra structure,
is linked with many other invariants of interests and comes with a famed history. As our point of
view will be quite modern, we want to recall a few elements of history at the very beginning.

Before topological Hochschild homology, there was simply Hochschild homology, which we will
denote HHyz. Given a ring R and a R-bimodule M, HHz(R, M) is traditionally as the Tor-groups
of R and M viewed as modules over R ® R°P; our higher categorical point of view allows to simply
write

HHy(R, M) := R®% M

where for the first and last time, we added a superscript L to insist on the fact that this tensor is
derived, that is, taken in the presentable stable category D(Z) of derived Z-modules which we will
simply denote Mod(Z), keeping in with modern fashion.

The name comes from Hochschild, who introduced it in a paper as the homology of an explicit
complex (the so-called Hochschild complex). In modern terms, it is obtained via the Dold-Kan
correspondence from the following simplicial object:

M ® R®" M®R_—=M
— ==

using the R-linear multiplication map on M on the k**-component. Note in particular that
mo HHz(R, M) ~ R/[R, M], and the canonical map tr : Proj(R)~ — R/[R, R] factors through
Ko(R), because it is in particular additive. In fact, the trace map lifts to the whole spectrum, to
something called the Dennis trace map:

K(R) — HHz(R, R)


https://drive.google.com/file/d/1rQn6KuwEGfAUur7Y_2OXAvhyS2lJs-sc/view

Even for non-K-theorists, Hochschild homology is quite an interesting object. For a smooth com-
mutative algebra A over a field k of characteristic zero, m, HHz(A/k, A/k) coincides with the
Kébhler differentials Q7 Jk and for general non-smooth A, receives at least a comparison map.

It also comes with an action of the circle S!, related to the de Rham differentials aQn /e Qz%i

(we refer to Matthew Mororw’s notes| for more details in this direction). This S'-action only exist
when the bimodule is the ring itself, and can be understood from the perspective of cyclic objects,
as the geometric realization of cyclic object carries canonically such an action.

Taking homotopy fixed points and the Tate cohomology (in the Z-linear world) for the S*-
action yields spectra called (negative) cyclic homology HC™ and HP. There is a map HC™ — HP
whose fiber we call HC, the cyclic homology — traditionally, we should incorporate a shift because
the norm map for S! has a shift (see Corollary 1.4.3 of [NSI7]):

B( st — (P s ()

so that HC coincides with homotopy orbits for the S'-action but this introduce an annoying shift
in the notation everywhere else. These invariants were discovered first by Connes and Tsygan,
without quite realizing the S'-action at first, and it is under Connes’ impulse that the cyclic
category was introduced to formalize this action and reinterpret the earlier construction in this
framework.

The trace map for HHyz is not very interesting because Hochschild homology is often far too
simple to tell interesting things in K-theory: for instance there is no higher Hochschild homology
for Z so this map loses the information on higher K-groups of Z, and similarly for F,, K(F}) is in
odd degrees and HHy(F,) is even. However, this trace map is S*-equivariant for the trivial action
on K-theory. In particular, it lifts to a map K — HC™ and rationally, it also vanishes on HP
hence lifts to K®Q — HC ®Q. This refined cyclic trace map is actually able to capture more on
K-theory. A result of Goodwillie [Goo86] states that if R — S is surjective with nilpotent kernel,
then

fib(K(R) — K(S)) —— fib(HC(R) — HC(S))

is a rational equivalence (i.e. an equivalence after tensoring with Q). This is quite a striking re-
sult, as computations in K-theory are really hard, whereas HC is a manageable object to compute.
Unfortunately, it just breaks down away from characteristic zero. This is where THH enters the
story.

The insight, due to Goodwillie and Waldhausen, is that K-theory, unlike HH, is not really a
"linear" object, e.g. K(F,) is not a Fy-module. It mostly lives over the initial (non-zero) ring ...
but this is not(!) Z in homotopy theory, but the sphere spectrum S. They wondered if there was
a "topological" refinement of HH (in the sense that it understood more than just 7S ~ Z but the
topology above) and this replacement should make the statements hold integrally.

In fact, it was known that stable K-theory, the invariant obtained from K-theory by forcefully
adding a dependence in the bimodule variable via the square-zero extension K(R @ M) and then
forcing it to be M-linear, was rationally Hochschild homology and it was expected that the integral
object was this topological Hochschild homology, a conjecture that made it into Goodwillie’s 1990
ICM address.

Of course, this predates more higher categorical technology so it took Bokstedt some amount
of effort to define properly THH, and study the extra structure — with Hsiang and Madsen in
[BHMO3], they described that not only did THH(R) have a S!-action, it also had a cyclotomic
structure which in modern terms we would describe as S'-equivariant maps

¢, : THH(R) — THH(R)"»

Using this structure, one can form topological version of the periodic and negative theories we
introduced earlier, namely we let TC™ (R) := THH(R)™", TP(R) := THH(R)"', but the correct
replacement of HC actually involves the cyclotomic structure. In formula, following the Nikolaus—
Scholze approach of [NS17], one lets:

can

TC(R) := Eq | THH(R)'' == [ (THH(R)!%)"S'

1
(‘1’;3 ) p prime


https://web.archive.org/web/20201224194152/https://www.math.arizona.edu/~swc/aws/2019/2019MorrowNotes.pdf

The resulting invariant is called topological cyclic homology. About at the same time, Dundas—
McCarthy proved in [DM94] that THH was indeed stable K-theory for connective rings and con-
nective bimodules, and after some more efforts, they produced an integral version of Goodwillie’s
theorem, namely that if R — S is map of connective ring spectra such that on g, it is surjective
with nilpotent kernel, then

fib(K(R) — K(S)) —=— fib(TC(R) — TC(S))

is an equivalence. The proof of this result is quite technical, and relies on both various simpli-
cial comparisons and the calculus of functors of Goodwillie — something that Goodwillie had
already envisioned for his result in [Goo86] even if he did not use it in the end. This result is par-
ticularly key to compute K-theory of more complicated rings, like Z/p"Z when n > 2, see [AKN24].

The goal of this course, or what we want to achieve at the end of multiple courses following one
another, is to ezrplain this result, and the word has been italicized because we do not simply want
to give a presentation of the proof with minor modern improvement but truly a different treatment
of it, which follows the ideas of the series of papers [HNS24l [HNRS26al, HNRS26b] — which are
also currently not all been publicly released.

There are two major differences we want to implement: the first is to move away from rings,
or even ring spectra and try to understand this story at the level of stable categories, sometimes
idempotent-complete or even large dualizable following insights of [Efi24]. In K-theory, this has
always been somewhat standard ever since Quillen’s seminal work on higher algebraic K-theory
[Qui73] but references for THH of stable categories are few and far between. We claim that done
correctly, this will allow, just as in K-theory, to turn THH from an object realized by a certain
construction and the structure therein inherited from special properties of this construction, into
an object having a universal property and us being able to prove central features of THH via the
study of the often simpler property.

In THH, unlike in K-theory, it is central to implement this with coefficients. These coefficients,
which generalize bimodules over a ring, are bi-exact functors C°? x C — Sp. We will also explain
why these are naturally the "coefficients of a linear theory" over Cat®™ — by this we mean functors
F(C,—) where the blank variable is colimit-preserving or at least exact — by identifying them as
C varies with the category TCat™ the tangent bundle of Cat™ which is the abstract category of
coefficients of linear theories over Cat™.

In this world, we will furnish a universal property for THH, which will use that THH(C, M) is
linear in the M-variable and the other key feature of THH we have not mentioned: its invariance
under cyclic permutations. More precisely if M is a (C,D)-bimodule and N a (D,C)-bimodule,
then there is an equivalence:

THH(C, M ®p N) ~ THH(C, N ®p M)

This cyclic invariance is one of the defining feature of the trace. The reader fond of linear algebra
might know for instance that a linear form f : M,(R) — R which has the cyclic invariance is
necessarily a multiple of the trace, namely f(—) = f(E1) tr(—).

The notion of trace is one that can be defined extremely generally. We will show that THH
is a trace, in the category Pr%X of (large) presentable stable categories, which will take us into a
expository panorama of large categories in the higher world. In fact, following Ramzi in his thesis,
we will show that the uniqueness characterization of the trace lifts to TCat™, namely the functor

evy : Fun®e™V-L(TCat®™ &) —— ¢

which evaluates at the unit of TCat® a cyclic-invariant, colimit-preserving in the coefficients,
functor to a presentable stable £, is an equivalence with inverse X — X ® THH.

In fact, there is a refinement of this story that is central to trace methods in K-theory. Let us
first recall some linear algebra: given a real matrix M over R, one can compute the whole Taylor
tower of det(I + ¢tM). In fact, it is even easier to express after passage to the logarithm:

(-1

Indet(I +tM) =) .

n>1

tr(M™)E"



We claimed that THH was a refinement of the trace and our refinement of Indet( + tM) is the
fiber KY¢(C, M) := fib(K(C® M) — K(C)) where C & M is a categorical version of the square-zero
extension, details of which we won’t go into now. Note that as the name suggest, K¢ has the
cyclic invariance of the trace (in fact, this is also true of det(I + M) and is known under the name
of Weinstein-Aronszajn identity). In particular, forcefully imposing cyclic K-theory to commute
with colimits in the M variable will give a point in Funcyc’fbw_L(TCatEx, &), i.e. this derivative is
of the form X ® THH and X ~ S by a previously mentioned result of Dundas-McCarthy.

More generally, one can show that a n-excisive, finitary, additive, cyclic invariant F : TCat® —
& promotes to n-truncated polygonic objects in £, i.e. that one can record functorially the data
F(C, M®*) for 1 < k < n and they are related by maps

¢k,l . F(C,M@)k) N F(C’M®kl)7—01

which are Cg-invariant and exist for kI < n. The target is the proper Tate construction, i.e. the
Tate construction with respect to the family of proper subgroups of C; instead of the usual (which
is with respect to the trivial family of subgroups). This provides a functor

Funcyc,fbwfnexc,add,w (TCatEX, 5) chgn (5)

which evaluates at the unit of TCat™ the refined functor valued in polygonic objects. The extra
hypotheses (finitary, additive) are precisely added so that this functor is still an equivalence. The
inverse is given in formula by X — TR, (X ® THH(—)) where the tensor product is using that
Pgc.,,(€) is tensored over Pgc.,, (Sp), that THH admits such a structure and TR,, : Pge.,,(£) — &€
is the right adjoint of the trivial functor. -

In particular, TR,, is trying to glue back the extra data supplied by the polygonic spectra, in
a way not too dissimilar to truncating the sum of traces in the Taylor tower of Indet(I + tM). In
fact, taking the n-excisive approximation of cyclic K-theory gives a functor TCat®™ — Sp with
all of the extra properties which coincides with TR,,(THH), i.e. up to some extension problems
which mean we cannot write a direct sum, the formula for Indet(I 4 ¢M) holds also in the world
of stable categories with coefficients.

In fact, and at least for the case of square-zero extensions, the Dundas-Goodwillie-McCarthy
theorem can be understood as a phenomenon of both cyclic K-theory and cyclic TC converging to
the limit of their Taylor tower, which also happen to coincide.
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1 How to tame your large category

Large categories can be scary. The goal of this section is to give the reader some tools to
turn their large, smelly, hirsute category into a well-behaved, groomed and all-together presentable
category.

1.1 The amazing category ef-spaces ef-homeotopy-types ef-anima of groupeids
S

Let us begin by a example, the poster child of a nice, large category: the category S of what
we will call spaces or groupoids but feel free to use any other word you prefer, like anima or
homotopy-type. The category S is the full subcategory of Cat spanned by those categories where
every arrow is invertible.

Proposition 1.1.1 The inclusion & — Cat admits both a left and a right adjoint. The former
is denoted | - |, and computed by forming the localization at all arrows and the latter, denoted
(=), is obtained as the wide subcategory spanned by invertible arrows.

In particular, the above provides a rather robust way of computing colimits and limits in S,
since one can use the machinery developed for categories. We recall the following statement, which
is paramount to compute colimits of categories and was proven in Fabian’s earlier lecture.



Lemma 1.1.2 Let F': C — Cat and denote Un(F) — C the cocartesian unstraightening of F'.
Then, colim F is the localisation of Un(F') at the cocartesian edges.

As a sanity check, remark that if F' is space-valued, then every arrow in Un(F') factors as a
cocartesian edge followed by an equivalence, so colim F' is indeed a space.

To compute limits in Cat, one must take the category of sections of the unstraightening of
a functor instead, and then take the full subcategory spanned by those v such that for every
a : i — j, the induced map F(a)(y(:)) — ~(j) is an equivalence (or the other way around,
depending of whether one takes the cocartesian or the cartesian unstraightening). The reader who
is not familiar with these ideas is invited to try to compute for instance pullbacks of categories
this way, as we will often use the concreteness of this construction.

I Corollary 1.1.3 The category S is complete and cocomplete.

Let us further analyse colimits in S. For this, we will need an intermediary result; if C is
a category, we write P(C) for the category Fun(C°P,S) of presheaves and j : C — P(C) for the
Yoneda embedding.

Lemma 1.1.4 Let ' : C — D be a functor with target a cocomplete category, and let j : C — P(C)
be the Yoneda embedding. Then, the functor 5 F : P(C) — D preserves colimits.

Proof. We follow roughly Theorem 8.4.3.5 in [Lurl8al Tag 03WH]. Since we can test along
mapping spaces (i.e. it suffices to show that Map(ji1F(—), X) sends colimits to limits), we reduce
without loss of generality to the case where D = S°P.

Note that (j;)°P identifies with the functor which right Kan extend along j°P, which is just the
Yoneda embedding of C°P. Under this identification, we have to justify that this functor restricts
to

Fun(C, 8°)°P ~ Fun(C°P,S) — Fun®(P(C)°P, S) ~ Fun®(P(C), S°P)
i.e. that if ¢ : C°? — S is a presheaf, then j, F sends colimits to limits. But by the Yoneda lemma,
there is an equivalence
J«F ~ Nat(—, F)

since both sides have the same universal property.
A different proof of this claim is to remark that jiF : P(C) — D has a right adjoint given by

Rp: X € D+—— Mapp(F(—),X) € P(C)

which can be checked by the local criterion for adjunctions. O

Proposition 1.1.5 Every object in S is a colimit of *. In fact, S is freely generated under colimits,
in the sense that the inclusion ¢ : {*} — S induces an equivalence

i* : Fun®(S,C) —— Fun(x,C) ~C

for every cocomplete C, where Fun® denotes the full subcategory of colimit-preserving functors.

Proof. Using Lemmal[l.1.2] the first claim is immediate as any X € S is also the unstraightening
of the associated functor cst(x) : X — S of the constant functor equal to *.

Let us also include a more "topological" explanation. Recall that up to weak equivalence, ev-
ery (nice-enough) topological space is a CW-complex, with possibly infinitely many cells in each
dimension. In particular, each cell is built out of spheres S” := $"S" where S° := {*} [[{*} and
disks which are contractible i.e. homotopic to a point. Since the gluing in CW-complexes happens
along cofibrations, any presentation of a CW-complex gives rises to a colimit-presentation of the
associated homotopy type.

We now prove that ¢ is an equivalence. First recall from say [Lur08, Proposition 4.3.3.7] that

i* : Fun(S,C) —— Fun(x,C) ~C



has a left adjoint 4, which is fully-faithful and given by the left Kan extension functor. Unravelling
the formula for left Kan extension, for a point A : x — C, i/ A is the functor described pointwise by

X — colim A(x)

pix—X

which we will often write X ® A(x). This colimit does indeed exist since C is cocomplete and i, is
fully-faithful because i is (see §4.3.2 of [Lur08]). Because colimits commute with other colimit or
more generally, thanks to the lemma below, this adjoint lands in the full subcategory Fun™(S,C)
and therefore the whole adjunction descends.

In particular, as the adjoint of a fully-faithful functor, i* is a localisation, namely at the
collection of arrow W := {#1i*(F) — F'} — by this, we mean that any functor ® which inverts
those arrows must factor essentially uniquely through i*: this is obvious since the collection of
arrows gives the factorization (® o)) oi*. Now notice that i* is conservative: if F' — G is a natural
transformation of colimit-preserving functors S — C such that F'(x) — G(*) is an equivalence,
we claim that FI(X) — G(X) is also always an equivalence. This follows easily from choosing a
presentation of X as a colimit of * which exists by the first part.

To conclude, we remark that a conservative localisation is necessarily a localisation at no non-
trivial arrows (or directly that a functor which is conservative and has a fully-faithful adjoint is an
equivalence from the triangle identities), hence an equivalence. O

*

In fact, the proof of Proposition [1.1.5| generalizes to the following:

Proposition 1.1.6 Let D be a cocomplete category and C a small category, then, restriction along
the Yoneda lemma induces an equivalence:

§* : Fun™(P(C),D) —— Fun(C, D)

We say that P(C) is freely generated by C under colimits.

Proof. Since D has small colimits, j* has a left adjoint j; given by left Kan extension along
J, which indeed lands in colimit-preserving functor and is fully-faithful since the Yoneda lemma
guarantees that j is fully-faithful. Hence, as in Proposition [I.1.5] j* is a localisation and it suffices
to check that it is conservative and by similar arguments, this reduces to the fact that every
¢ : C°? — S is a colimit of representable functors.

Indeed, there is a map of spaces, natural in X, which we can obtain by the evaluation of the
counit of the above adjunction for the functor id : P(C) — P(C),

colim Map,(X,Y) — ¢(X
s Pe( ) ?(X)

We claim this map is an equivalence. Note that this colimit is indexed by P(C) /¢4 Xp(cy C which
by the Yoneda lemma, corresponds to the cartesian unstraightening of the functor ¢ : C? — S.
But the functor Map(X,p(—)) : Un“*"*(¢) — S factors through the projection p : Un“*"*(¢) — C.

We can use Lemma [[.I.2] to compute this colimit. The cocartesian unstraightening of the
composite Map(X, p(—)) is given by Cx, x¢ Un“"*(¢); this category receives a map from ¢(X)
thanks to the commutative diagram:

cst(idx)
e

#(X) Cx/

I |

Uncart (¢) C

Now, ¢(X) is a space so it suffices to argue that ¢(X) — Cx, x¢ Un““""(¢) is a weak homotopy
equivalence. This follows from the fact that this functor has an adjoint, which we can describe
as sending (f : X = Y,y € ¢(Y)) to the ¢(f)(y) € ¢(X) — this defines a left adjoint because
(idx : X = X,z € ¢(X)) is initial in each slice. This concludes. O

In particular in the proof, we obtained:



Corollary 1.1.7 Every presheaf is a colimit of representable presheaves, i.e. the image of j
generates P(C) under colimits.

Another proof of the above follows from the formula of Lemma [T.4.22] We now turn to:

Definition 1.1.8 A finite space is an object X € S which can be obtained as a finite colimit of *,
i.e. in the smallest full subcategory of S closed under coproducts and pushouts and containing
the point.

Note that it is hard to not be self-referential in defining the finiteness notion. The above is not
but it was implemented the fact that iterated coproducts and pushouts produce all finite diagrams,
which one might want as a property and not a definition.

An equivalent definition is that a category C is finite if and only if there exists a simplicial set
weakly-equivalent to C with finitely many non-degenerate simplices. It holds that the category
of finite categories is the smallest closed under pushouts and coproducts and containing both
and {0 — 1}. Note that since S — Cat preserves colimits, finite spaces are also legitimate finite
categories and they span the further subcategory which is only generated by *; in particular, finite
spaces are therefore equivalently those who can be modelled by Kan complexes with finitely many
non-degenerate simplices and those obtained by finitely many pushouts and coproducts out of .

We now want to explain what ones needs to do to recover the whole category S from its finite
objects.

Definition 1.1.9 A diagram category I is called filtered if for every finite category C, the diagonal
functor cst : I — Fun(C, I) sending ¢ to the constant functor C — I with value ¢ is cofinal.

Differently stated thanks to Quillen’s Theorem A [Lur08, Theorem 4.1.3.1], cst : I — Fun(C, I)
is cofinal if for every f : C — I, the category of diagrams Fun(C,I)s; Xpun(c,r) I, Whose objects
are natural transformations {f — cst(¢)} and maps are induced by maps ¢ — j in I making the
associated diagrams commute, is weakly contractible.

m Example 1.1.10 Right adjoint functors are always cofinal by virtue of the categories required to
be weakly contractible having an initial object, hence categories with finite colimits are filtered. m

Remark 1.1.11 Actually, it suffices that each Fun(C,I)s; Xpun(c,ry I is non-empty for it to be
weakly contractible (see Proposition 9.1.1.18/Tag 02PJ of [Lurl8al).

In particular, since cofinal maps are weak equivalences, I is non-empty using the case C = §.
Moreover, using the case of finite sets, it follows that one can find a cone point for every pair of
objects of I as well as an equalizing morphism for any two pair of morphisms. In particular, filtered
1-categories are filtered in the higher sense as well.

Writing a space as the filtered colimit of a finite skeleta, we get:
I Corollary 1.1.12 Every object X € S is a filtered colimit of finite spaces.

More is actually true, as we will soon show, but first let us introduce another notion, which we
will quickly relate to finiteness:

Definition 1.1.13 A space X is compact if the functor Map(X,—) : S — S commutes with
filtered colimits.

m Example 1.1.14 The empty space () is compact. The point * is compact. [

In fact, it is possible to recognize filtered categories by how the colimit functor valued in S
behaves:

Proposition 1.1.15 In S, filtered colimits commute with finite limits. In particular, finite spaces
are compact.

Proof. Let us explain quickly the second part: as a functor in X, Map(X, —) sends finite colimits
to finite limits. In particular, a finite colimit of compact objects stays compact (note that this
actually holds for any category C, as it only uses the commutation at the target). This concludes
using the previous example.



For any finite diagram I, any filtered J and any functor X : I x J — &, there is a natural map

I c%gn lzleHIl X(i,5) — 17,1€HIl C%{I]n X(1,7)
and we have to check it is an equivalence. Note that we can reduce to the case where the finite
limit is a pullback or terminal. The latter case is straightforward by virtue of filtered categories
being contractible.

We will not give a proof for the case of pullbacks, but let us sketch a strategy. Because we
have access to particularly explicit descriptions in the case of sets, it is easier to check that this
property holds there. One strategy, which is the one of [Lur0§|, is therefore to push this fact
through to nice topological spaces and then through the localisation, see for instance [Lur08|
Proposition 5.3.3.3]. Another way of presenting this idea is through [Lurl8al Tag 05XW], which
is less model-dependant. O

This makes S compactly-generated, i.e. every space is a filtered colimit of compact spaces; we
will return to this property later. In a different direction, let us also say that this commutation
property of filtered colimits is an equivalent characterization of filtered diagrams:

Corollary 1.1.16 A category J is filtered if and only if the functor colim; : Fun(J,S) — S
preserves finite limits.

Proof. Given the above, we are reduced to prove that if colim; preserves finite limits, then
the functor cst, : J — Fun(X, J) is cofinal for every finite category K. As we explained earlier,
it suffices to check that for every F' : K — J, the category Fun(K,J)p/ Xpun(k,s) J is weakly
contractible. Another description of this category is the unstraightening of the functor j € J +—
Nat(F, cst(z)) ~ limge gor Map(F(k), 7).

Now, since K°P is again finite, we know that

n: c?ély k»IEIII{I}’P Map(F(k),j) — k»lelfrgp c;)él}n Map(F(k),7)
is an equivalence. In particular, the left hand side is also the localisation of Fun (K, J) p/ X pun(x,.) J
at the cocartesian arrows by Lemma |1.1.2] which we precisely want to show is equivalent to a point.
To conclude, it suffices to remark that colim;e; Map(z, j) is always contractible for any « € J.
Indeed, Map(z, —) is classified by the cocartesian fibration J,, — J and J,, has an initial object,
hence becomes contractible when inverting all its cocartesian edges. O

Let us also include a more pedestrian way of proving the last claim: note that there is a point in
each colimje ; Map(F'(k), j) induced by idp(x) : F'(k) — F'(k). These lift to a point in the limit over
K°P by functoriality and therefore we have a point X € colim e s limge gor Map(F(k), —). In con-
sequence, since J is filtered and * is compact, there is j € J such that X € limge gor Map(F(k), 7)
and using the projection maps of the limits, this endows j with the structure of a cone point to F',
i.e. there is a map F' — cst(j). In particular, we have found our category to be non-empty. Being
more careful we could show that it is connected, and so forth to get the result. This precisely what
the unstraightening captures in a rigorous manner.

I Corollary 1.1.17 An object X € S is compact if and only if it is a retract of a finite space.

Proof. Compact objects are closed under retracts: indeed if X is compact and A is a retract of
X, then there is a diagram:

colim;er Map(A, Z;) ———— Map(A, colim;er Z;)

J J

colim;er Map(X, Z;) —=— Map(X, colim;¢; Z;)

| J

colim;er Map(A, Z;) ———— Map(A, colim;er Z;)



which exhibits the colimit-comparison map of A as a retract of an equivalence, hence an equivalence
again.

Now, given a compact space X, write X ~ colim;c; X; with I filtered and the X; finite. Then,
idx : X — X =~ colim;¢; X; must factor through one of the X;. This exhibits X as a retract of
X; which concludes. O

Warning 1.1.18 Retracts of finite spaces need not be finite again. In general, retracts of finite
spaces are called finitely-dominated. A Theorem of Wall, called Wall’s finiteness obstruction,
and related to Thomason’s classification theorem shows that for a finitely-dominated space X,
there is a class in K(S[QX]) which vanishes if and only if X is finite.

Corollary [[.T.12] admits the following strengthening; in fact let us note that even if we present
the result and the proof for S, it holds mutatis mutandis when replacing S by P(C) for some small
C and S by the full subcategory of P(C) containing the image of the Yoneda and stable under
finite colimits.

Proposition 1.1.19 Suppose C has filtered-colimits, and write i : S™ — S for the inclusion of
the full subcategory spanned by finite spaces. Then,

i* : Fun® (S,C) —— Fun(S™",0)

is an equivalence, where the superscript w denotes the full subcategory of finitary, i.e. filtered-
colimit preserving functors. Its inverse is given by left Kan extension along 1.

Proof. By Corollary the above functor is conservative. We check that it has a left
adjoint which is fully-faithful. In fact, we claim that this left adjoint is simply given by left Kan
extension along 4, which is automatically fully-faithful since 4 is. This follows from checking that
if f:8 — C is any functor, then i F : & — C preserves filtered colimits.

We remark that the functor jii : Fun((S™)°P, §) — S, obtained by left Kan extending i along
the Yoneda embedding of S has a filtered-colimit preserving right adjoint. This right adjoint is
given by the formula

X € 8 — map(i(—), X) € Fun((§™)°P,S)

Note that filtered colimits in Fun((S%")°P,S) are computed pointwise so that the above formula
shows the right adjoint commutes with filtered colimits precisely because finite spaces are compact
in S by Proposition [I.1.15]

Now note that ¢ ~ jii o j by fully-faithfulness of the Yoneda embedding j, so that we can
perform the left Kan extension in two steps: first do ji and then (jii); which is equivalently given
by precomposition along the previous right adjoint. In particular, to conclude it suffices to check
that ji lands in filtered-colimit preserving functors — this follows from Lemma [T.1.4] O

One can do a version of the above adapted to a regular cardinal x > w.

Definition 1.1.20 A category is said to be x-small if it is given by a simplicial set with a x-small
set of non-degenerate simplices.

The dependence in « is as follows: if Kk < A, then every s-small category is in particular A-small.

Definition 1.1.21 A category J is said to be k-filtered if for every k-small category C, the functor
cst : J — Fun(C, J) is cofinal.

It follows from the above that the dependency in k is that if kK < A, then every k-small
filtered category is A-filtered. In particular, preserving A-filtered colimits is a weaker condition
that preserving k-filtered ones.

Proposition 1.1.22 In S, k-filtered colimits commute with x-small limits. Moreover, a category
J is k-filtered if and only if colim; : Fun(J,S) — S preserves k-small limits.

Proof. Recall that a functor preserves k-small limits if it preserves k-small products and pull-
backs. In particular, in light of Proposition[I.1.15] the first claim reduces to proving that x-filtered
colimits commute with x-small products of spaces.



By Proposition [I.1.15] all the spheres S™ are compact; moreover, my : S — Set preserves
colimits and arbitrary productsﬂ Since r-filtered colimits are in particular filtered, this reduces
the claim to a purely set-theoretical one:

colim H Xpj — H colim X}, ;
J ’ J ’
kEK keK

for X : J x K — Set (with K discrete). This is true and checkable by hand.

In particular, this argument gives one direction of the claimed equivalence and we can run the
same proof as in Corollary [1.1.16| (which we will explain later in its correct generality) to get the
other implication. O

I Definition 1.1.23 An object X € S is k-compact if and only if Map(X,—) : S — S preserves
k-filtered colimits.

Remark 1.1.24 Unlike in the case kK = w, if k is uncountable, a space is xk-compact if and only if
it is k-small. The proof starts in the same way: every x-compact space is a retract of a k-small
space by the same arguments as Corollary [[.1.17] but splitting a retract is a countable colimit
since Idem is countably small, hence x-small spaces are stable under retracts, which concludes.

We also have the following generalization of Proposition [1.1.19

Proposition 1.1.25 Write i, : 8™ for the inclusion of full subcategory of x-small spaces. Suppose
C has k-filtered colimits, then,

i* : Fun®(S,C) —— Fun(S",C)

is an equivalence, where the superscript x denotes the full subcategory of k-finitary, i.e. k-
filtered colimit preserving functors. Its inverse is given by left Kan extension along i.

Proof. We will prove a more general statement in the next section, but the reader is encouraged
to adapt the arguments of Proposition [1.1.19 O

The above was a strengthening of the filtered-ness conditions, but one can also weaken the
condition of being filtered as follows:

Definition 1.1.26 A category I is sifted if the functor cst : I — Fun(X, ) is cofinal for every
finite set X.

m Example 1.1.27 Every filtered category is sifted. It is a well-known fact that A°P — AP x A°P
is cofinal (see [Lurl8al Tag 02QP], or play the combinatorial game through Quillen’s Theorem A
yourself) and since A is non-empty, A°P is sifted. Note that it is not filtered in general. [

It holds that a functor preserves sifted colimits if and only if it preserves filtered colimits as
well as geometric realization, i.e. A°P-indexed colimits. Note that the situation is different than if
one defined this notion in the 1-categorical world; in particular, A<y, which models the shape of
a reflexive coequalizer, is sifted in the 1-categorical world but not in the higher sense.

Proposition 1.1.28 In S, sifted colimits commute with finite products. Moreover, a category J
is sifted if and only if colim; : Fun(J,S) — S commutes with finite products.

Proof. We already know that filtered colimits commute with finite products, hence it suffices to
show that geometric realizations do. As we are not aware of a trick for this, we omit this proof —
one strategy is to resolve the geometric realization in a model category of choice and prove it there
(see Remark 5.5.8.12 and Lemma 6.1.3.14 of [Lur08]). The other direction of the equivalence will
be proven more generally in the next section, and is the same as in Corollary [[.1.16} O

IThe proof is as follows: show that it holds for Kan complexes, as in {this MSE question/ and then use the fact
that the localisation Kan — S preserves small products by virtue of the model structure, in fact only half of it
suffices by [Cis19l Proposition 7.7.1]
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Usually, an object X € C such that Map(X, —) commutes with sifted colimits is called compact
projective. In the case of spaces however, there is a much more usual name: finite sets.

Proposition 1.1.29 The full subcategory of S of those X such that Map(X, —) commutes with
sifted colimits is the category FinSet of finite discrete spaces (i.e. sets). Moreover, the inclusion
i : FinSet — S induces, for every C with sifted colimits, an equivalence

i* : Fun®™*(S,C) —— Fun(FinSet, C)

where the superscript sft denotes the full subcategory of sifted colimit preserving functors.

Proof. The second part will be subsumed in the next section. Let us only prove that FinSet is
the claimed category: since * is compact projective, so is every finite coproduct of it by virtue of
Proposition [T.1:28]

Conversely, if X is a space such that Map(X, —) commutes with sifted colimits, we can find
a Kan complex model for X itself and therefore realize it as the geometric realization of its n-
simplices, which are filtered colimits of finite sets. In particular, there is a sifted colimit of finite
sets whose colimit is X.

Therefore, idx must factor through a finite set and to conclude, we note that the retract of a
finite set is necessarily discrete and with finite . O

1.2 Doctrines and colimit-completions

In Proposition we explain how to freely add colimits to a category. But later throughout
the section, we realized that we could also have added less colimits to a bigger category than x
and this was still “free” in some sense. In this section, we first explore how to freely add a class
of colimits to a category while preserving some or in fact even, forcing a collection of cocones to
be colimits. Afterwards, we explore the interaction between adding a shape of colimits freely and
adding all colimits while respecting a shape, generalizing Propositions [I[.1.19] [T.1.25] and [T.1.29]

Given a collection S : {f, : Xo — Y.} of arrows in a category C, we can ask whether a given
object Z is S-local, i.e. if for every «, the natural map

fr:Nat(Yy, Z) — Nat(X,, Z)

is an equivalence. The collection of S-local objects is closed under limits. Note also that we can
always saturate a collection of arrows S, i.e. add to S all the morphisms X3 — Y3 such that the
above precomposition map is an equivalence for S-local objects, and this new collection S has the
same local objects. Moreover, S automatically contains equivalences, is closed under 2-out-of-3
and is closed under colimits; the following is Proposition 6.2.3.12 [Lurl8al, Tag 04KG] — we will
not reprove it.

Lemma 1.2.1 Suppose that S is a saturated class such that for every X € C, there is a map
f:X =Y with Y S-local and f € S. Then, the full subcategory S~'C of S-local objects of C
forms a reflexive subcategory, i.e. the inclusion has a left adjoint L : C — S~!C.

Let K be a collection of "shapes" (i.e. categories) which will serve as indexing our diagrams and
that we will typically denote K and fix C some category. Our goal is to freely adding K-shaped
colimits, by this we mean K-colimits for every K € K — in fact, we will sometimes need to be a
bit more subtle and preserve some colimit diagrams in C.

We let R = {fo : K5 — C} be a collection of diagrams in C, where K, € K and K} is our
notation for freely adding a cocone point to K,. In human language, we have chosen a collection
of C-shaped diagrams in C and a cocone for each of them.

Note the following two points, which are more technicalities than anything: first, we do not
require these cocones to be colimit cocones so that we are doing something more general than also
preserving some colimits, we are actually enforcing some diagrams to be colimit diagrams. Second,
we do require that the K, are in K which that if one wants to add say filtered colimits while
preserving some cocartesian squares in a category which does not have all pushouts, the resulting
category will have all pushouts.
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Theorem 1.2.2 There is a category Px(C) with K-shaped colimits and a functor v : C — PX(C)
which sends every diagram in R to a colimit diagram. Moreover, for every category D with
K-shaped colimits, precomposition by v induces an equivalence:

v* : Fung (PX(C), D) = Fung(C, D)
where Funyg denote the full subcategory of functors preserving KC-shaped colimits and Fung the

full subcategory of those functors sending every diagram in R to a colimit diagram.
Moreover, if the diagrams in R are already colimit diagrams in C, +y is fully-faithful.

Proof. We follow essentially the proof of [Lur(8, Proposition 5.3.6.2]. Write j : C — P(C) for
the Yoneda embedding and consider the collection S

colim(j o fo) |xa— (4 0 /) (*x.))

for each diagram f, : Kb — C in R where *g_ denotes the cocone point of K7. We first check
the conditions of Lemma A S-local object ¢ for the above collection is simply a presheaf
¢ : C°? — S such that ¢o f, is a limit diagram. We note that given a presheaf ¢, there is an initial
map
n:¢—1v

where the right hand side is S-local, and we can simply take 1 to be the limit indexed by the
full subcategory P(C),, spanned by those maps whose target is S-local. But now, for £ another
S-local object, the map

Nat (v, &) — Nat(¢, £)

is necessarily an equivalence by the universal property of . The astute reader will (rightfully)
complain that the limit defining ¢ is not necessarily small and therefore need not exist; the solution
to this problem is the small object argument (or the weak Vopénka principle, which we want to
avoid here). We sketch here an argument, due to Manuel Hoff, which explains this fix.

Up to change of universe, we can assume that S is small. We produce a S-equivalence ¢ —
(i.e. a map in the saturation of S) such that for every s — s’ in S, there exists a dashed map

Nat(s', ¢) —— Nat(s', )

Nat(s, ) — Nat(s,v))

making the square commute. By iterating this construction, the small object argument will provide
for us a S-equivalence whose target 1 is such that ©¥» — * has the correct lifting property with
respect to maps in .S, which is a reformulation of being S-local.

But now, we claim that we can take the map 1) — ¢ be the one given in the pushout square:

colim Nat(s, ¢) ® s Nat(s',¢) ® s | ——
(f:s—s')ES ( ) Nat(;];ﬁ)(@s ( (b) I
(]

|

colim Nat(s,¢) ® s’
(f:s—)\ISI’I)lGS (S QS) 5

where the tensor denotes the constant colimit indexed by the relevant mapping space. We note
that S-equivalences are stable under pushouts against any map, so it suffices to argue that the
left hand vertical map is a S-equivalence. Since S-equivalences are closed under colimits, we are
reduced to show that:

(Nat(s, ¢) ® s) H (Nat(s',¢) ® s') — Nat(s,¢) ® s
Nat(s’,¢)®s

is a S-equivalence. By 2-out-of-3 and closure under pushouts, it suffices to check that the maps
induced by composition along f : s — s’ in the commutative square which induced the above map
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are S-equivalences. Now, this last claim follows again because Nat(s, ¢) ® — is a colimit (constant
indexed by the left hand space), hence preserves S-equivalences. Finally, this concludes so that we
have verified the hypothesis of Lemma [1.2.1

We let L : C — S~!C be the left adjoint to the category of S-local objects, which exists by
Lemma and we write P;%(C) for the smallest full subcategory of S~!C containing the image
of Lo j and stable under IC-shaped colimits. We claim that for every D with K-shaped colimits,
precomposition along L o j induces an equivalence:

(Lo j)* : Fung(PX(C), D) — Fung(C,D)

We first note that L o j sends the diagrams of R to colimits since L inverts the maps in S and
preserves colimits, so the above functor is well-defined. Moreover, the minimality hypothesis on
PR(C) implies that this functor is conservative.

Suppose for a moment that D has all small colimits. This extra-assumption allows the left
Kan extension along L o j to exists and it is given by F + (jiF) o i where i : PX(C) — C is the
inclusion. In particular, since ¢ preserves K-shaped colimits, and 5 F : P(C) — D all of them by
Lemma the left Kan extension (L o j); does restrict to the wanted categories, so that it is a
left adjoint to (L o j)*.

Now given F' : C — D that sends R to colimits, we want to check that the map

F— (Loj)* (Lo jhF

is an equivalence. Now note that because j is fully-faithful, it will suffice to prove that jiF —
L*LyjiF is an equivalence. But because F' sends every f, to a colimit already, the functor jF
factors through the category of S-local objects S~'P(C) (in fact this is an if and only if), and
therefore is canonically equivalent to L, Liji F'.

Finally, we reduce to the case where D has small colimits. Note that D — D := Fun(D, S)°P
is colimit-preserving, as the opposite of the Yoneda embedding of D°P, and its target has all small
colimits since S has small limits. Hence, the above applies to D and it suffices to show that the
following square is cartesian:

Fung (PX(C),D) —— Fung(C,D)

| |

Fung (P (C),D) —— Fung(C,D)

In turn, this means showing that if F : 7%’%((3) — D preserves K-shaped colimits and restricts to
D along «, then F itself was already landing in D. But the full subcategory F~*(D) contains C
by assumption and is closed under K-shaped colimits, hence P (C) C F~1(D) which concludes by
minimality.

It remains to explain the last claim of the Theorem: suppose that every diagram in R is a
colimit diagram. Then, to show that « is fully-faithful, it suffices to check that j : C — P(C) lands
in S-local objects for the aforementioned collection of maps S. We have to show for every X € C

Nat(j(F(xr)), (X)) = Nat(colim j o F |, j(X))

for every diagram F : R — C. Using the Yoneda lemma and the fact that F(xg) ~ colimg F |g,
this is clearly follows from the fact that

Map(cgél}rzn F(r),X) — lleﬂé Map(F(r), X)

is an equivalence. O

We say that PX(C) is C to which we have added K-shaped colimits while forcing R to be
colimits. If R is already a collection of colimits cocones, we say that instead "while preserving
R-colimits". Finally, if R = (), we say that we have freely added K-shaped colimits to C

13



m Example 1.2.3 If £ = Cat and R = 0), Proposition has guaranteed that P (C) ~ P(C) and
7 is the Yoneda embedding. ‘ . .

We have also seen that S is the common value of Pg_f’lt(Sﬁn), ’Pg_f”t(S”) and ’P;thEd(FinSet).
In all three cases, we also got that the resulting category had all small colimits and the inclusion
preserved the complementary type of them, i.e.

,Ps)ffilt (Sﬁn) ~ P;;_—rrzlall (Sﬁn)
,Pg—let(sn) ~ Psmall (Sn)

Kk—small

P;ifted(FinSet) ~ 'Pﬁla”(FinSet)

where we hope all of the super/subscripts are clear. This is not a coincidence, and we will explain
it later in the section. [

Remark 1.2.4 Given K and a choice R of cocones in C, the association P (—) naturally refines to
a functor thanks to its universal property. Its source is the category of pairs (C, R) where maps
are functors which preserve the collections of the chosen coconed’ its target is the category of
categories with C-shaped colimits.

In fact, PR (—) is a left adjoint to the functor sending D with K-shaped colimits to (D, {K —
shaped colimits cocones in D}. This is especially practical because this adjunction often de-
scends when considering subcategories of the form (C,R) with R chosen functorially (such as
finite colimit cocones, etc ...).

“More precisely, f : C — D must be such that if p: K, — C is in R¢, then fopis Rp

We now showcase three examples which will be important for us later on. The first one will be
ubiquitous throughout this lecture.

Definition 1.2.5 The k-inductive completion of C, denoted Ind,?(C), is the category obtained
from C by freely adding s-filtered colimits, i.e. Ind,(C) ~ Pg_ﬁlt ).

The second kind of example will be a little less common for us, but does have its use in other
parts of higher category theory:
Definition 1.2.6 The non-abelian derived category of C, denoted Px(C), is the category obtained
from C by freely adding sifted colimits, i.e. Px(C) ~ 735”0 ted(C). In recent years, this category
has also been known as the animation of C.

We write Ret for the category generated by the graph two vertices A, X, with non-trivial maps
i:A— X,r: X — Asuch that r oi = id. We write Idem for the full subcategory spanned by the
vertex X. We note that the inclusion Idem — Ret is cofinal, hence every functor with source Ret
is left Kan extended from Idem. Therefore, a functor F' : Idem — C admits a colimit if and only if
it extends to Ret.

Definition 1.2.7 We write Idem(C) for the category obtained from C by freely adding retracts to
idempotent, i.e. Idem(C) ~ Pjd™(C).

Remark 1.2.8 If C admits finite colimits, it need not be that every idempotent has a colimit, i.e.
Idem is not a finite category in the higher categorical world.

We finish this section by ideas of Rezk [Rez21], himself based on 1-categorical results notably
by Adamek, Lawvere, Rosicky and many of their collaborators, from which tries to encapsulate
the fact that the three Proposition [1.1.15|[1.1.22] [1.1.28 have similar statements and similar proofs
(which we ourselves have skipped for this very reason).

For the rest of the section, fix U a collection of small categories which we call our doctrine.

Definition 1.2.9 A category J is called U-filtered if colim; : Fun(J,S) — S preserves U-shaped
limits.

A category J is called weakly U-filtered if for every U € U, the functor cst : J — Fun(U°P, J)
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I is cofinal.

m Example 1.2.10 If J has all U°P-colimits for U € U, then J is weakly U-filtered, since cst has a
left adjoint. Note also that although it looks different, this definition recovers the one for x-filtered
using U = {k-small categories} since those are closed under op. n

The reason for the op appearing in our definition is so that they disappear in the following:

Lemma 1.2.11 A category J is weakly U-filtered if and only if colim; : Fun(J,S) — S preserves
U-shaped limits of corepresentable functors. In particular, U-filtered categories are weakly U-
filtered.

Proof. By Quillen’s Theorem A [LurO8, Theorem 4.1.3.1], J is weakly U-filtered if and only
if for every U € U and every F' : U°® — J, the category Fun(U°P,J)p; Xpuner, sy J is con-
tractible. We recall that this category is the total space of the unstraightening of Nat(F, cst(j)) ~
limy ey Map(F(u), j) as a functor J — S.

On the other hand, colim; preserves U-limits of corepresentables if for every F' : U°? — J the
map

7 : colim lim Map(F(u),j) — lim colim Map(F'(u), j)
is an equivalence.

Note that by Lemma colim;ec s Map(F'(u), j) is always contractible as Map(F(u), —) is
classified by Jp(,), — J whose total category has an initial object. In particular, if 7 is an
equivalence then the left hand side is contractible and therefore again by Lemma the cate-
gory Fun(U°P, J) F/ XFun(Uer,s) J is weakly contractible. Reciprocally, if this category is weakly-
contractible, then the left hand side is also contractible hence both sides are contractible and
therefore the map is an equivalence. O

Warning 1.2.12 The converse need not hold. Rezk has some examples in section 6 of his paper.
Let us also mention another. Consider U := {k-small sets} for some x > w, then we claim that
the category A, of linearly order x-small sets and order preserving maps is weakly U-filtered;
the argument adapts from the standard argument showing that A is (weakly) w-sifted.

Nonetheless, it can be shown that s-small products of spaces do not commute with A-
indexed colimits. In fact, the main result of [AKV00] shows that in the 1-categorical world,
U-filtered categories are actually x-filtered (!), which A is not.

Therefore, if J is such that colim; : Fun(J,S) — S preserves x-small products, so will the
colimit functor valued in Set since 7y preserves colimits and arbitrary product{? and therefore
J will be k-filtered. Since k-small sets are in particular x-small categories, we see that colim ;
preserves k-small products if and only if J is x-filtered.

%“Yet another thing we do not know of a good reference for, except for https://math.stackexchange.com/
questions/713792/does-pi-O-preserve-infinite-productsthis MSE answer which is not quite written in a
model-independent way.

B Definition 1.2.13 We call a doctrine sound if the converse of Lemma [I.2.11] holds.

m Example 1.2.14 The doctrines of x-small categories are sound for every k regular, as we have
checked in Proposition [1.1.22} since every small category is k-small for some k, this extends to the
doctrine of all small categories. Note that this fails for k-small sets if k > w by the above. n

We will not draw an explicit criterion for soundness in this version of the course notes, but we
want to include one eventually.

Given a doctrine U, we write U for the collection of U such that colim; : Fun(J,8) — S
preserves U-shaped limits for every U-filtered J. By definition ¢ C . Moreover, if 4 C V, then
ucvu.

I Definition 1.2.15 A doctrine U is reqular if U =U.

m Example 1.2.16 The doctrine of x-small categories is regular as soon as k is a regular cardinal. m
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The categories inﬁ@ are often known are universal (co)limits. In particular, for every regular
doctrine U, we have () C U.

Lemma 1.2.17 The category Idem belongs to @, i.e. it is preserved by colimy : Fun(J,S) — S
for every J.

Proof. This follows directly from the fact that Idem — C has a colimit if and only if it extends
to Ret. O

Note that since Idem®® ~ Idem, the above statement also holds for limit preservation.

I Definition 1.2.18 An object X € C is U-compact if Map(X, —) : C — S commutes with U-filtered
colimits.

m Example 1.2.19 The point * € S is U-compact for any collection &/. Any initial object is U-
compact for any U. n

Note that U-compactness only depends on the class of U-filtered categories, which itself only
depends on the regular doctrine U generated by U.

Lemma 1.2.20 Let C be a category. The subcategory of U-compact objects of C is closed under
all the U°P-indexed colimits that exist, for U € U. In particular, U-compact objects are always
closed under retracts.

Proof. By Lemma [1.2.17] Idem € @ C U. Hence, it suffices to prove the first claim. Given a
U°P-indexed diagram of compact objects X, which admits a colimit X in C, we have Map(X, —) ~
lim, ey Map(X,, —). Now given J which is U-filtered and a J-indexed diagram Y, the canonical
map

colim;e s lim,ey Map(Xy, Y;) —— lim,ep colimje y Map(X,, Y;)

is an equivalence. Using that each X, is compact, we can pull the colimit on the right hand side in-
side, i.e. this term identifies with Map (X, colim; Y;) whereas the left hand side is colim; Map(X,Y;)
which concludes. O

Another consequence of the above is that the full subcategory of S of U-compact objects always
contain the full subcategory generated by * under U°P-indexed colimits for U € U.

Remark 1.2.21 Actually, the previous proof only used that colim; commutes with corepre-
sentable presheaves, so it also applies to a version of compact objects defined with respect to
weakly U-filtered colimits.

Definition 1.2.22 Let C be a small category. We write Indy,(C) for the category obtained from
C by freely U-filtered colimits, i.e. Indy(C) ~ ’Péf_ﬁlt (C) in the notations of Theorem

m Example 1.2.23 It is standard to write Ind(C) for Ind,,— ;1+(C), i.e. freely adding filtered colimits
to a category, and call it the inductive completion of C (in the sense of objects in Ind(C) being
formal inductive systems, inductive being a old (possibly weaker?) name for filtered.

More generally, we will write Ind,(C) for freely adding -filtered colimits to a category. L]

m Example 1.2.24 The “old-school” name and notation for Indg; fseq(C), freely adding sifted colimits
(equivalently, filtered colimits and geometric realizations) is Py, the non-abelian derived category.
If C has finite coproducts, the following theorem will show that it also coincides with finite-product
preserving presheaves on spaces, a process often call animation under the influence of the condensed
mathematics crowd, which call § the category of anima.

In particular, as a consequence of what we explained in the previous section, § is the animation
of the finite coproduct closure of *, i.e. the category FinSet of finite sets. [

Theorem 1.2.25 — Rezk. Let U be a sound doctrine. Suppose C is a category with U°P-colimits
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for every U € U, then there is an equivalence
Indy, (C) = Funu_lim(COp, S)

where Fung,_ i, designates the full subcategory of -limit preserving presheaves.
Moreover, Ind;(C) has U°P-colimits for every U € U and they are preserved by the fully-
faithful j; : C — Indy(C), so there is another equivalence Indy(C) ~ P, ().

Proof. We begin by reducing the second assertion to the first; for this, we prove that the category
Fung/—1im (C°P, S) has U°P-colimits for U € U and they are preserved by the Yoneda embedding. It
follows from Lemma [[.2.1] that the inclusion

Funu,hm (COP, S) — P(C)

has a left adjoint. Indeed, by the Yoneda lemma, we see that the left hand side is the category of
presheaves which are local with respect to the collection of maps

lim 7 (X°P j(colim X °P

colim j(X°P(u)) — j(colim X°P(u))

for every X : U — C°P, and this collection satisfies the hypotheses of In particular, since
P(C) has colimits, so does Fung/_1;;(C°P,S) and the above collection of maps makes it clear that
U°P-colimits are preserved by j.

it coincides with the description of 775{ —filt (C) given by Theorem 2l Note that since our R is
empty, this is precisely the smallest full subcategory of P(C) containing the image of the Yoneda
and closed under U-filtered colimits.

We first remark that if X € C, then j(X) := Map(—,X) : C°°® — S preserves U-limits.
Moreover, Fung_jim(C°P,S) is closed under U-filtered colimits in P(C) precisely because those
commute with /-limits in spaces. To conclude, it suffices to show that every presheaf ¢ : C°P — S
which commute with /-limits is a U-filtered colimit of representables.

We have already proven this statement: indeed, recall from the proof of Proposition that

the canonical map

We now check that Fung_1;, (C°P, S) has the wanted universal property. In fact, we check that
12

j((zgl)lgld) Map(X,Y) — ¢(X)
is an equivalence. We claim that the category Un“*(¢) ~ P(C) /¢ Xy C which indexes the
colimit is U-filtered, i.e. that space-valued colimits indexed by Un“*"*(¢) commute with 2/-limits.
Note that it is automatically weakly U-filtered since it admits U°P-colimits; this is straightforward
from identifying Un®**(¢) ~ Funy_1m(C°P,S) /¢ XFuny_um(cor,s) C and the first statement we
proved. O

Remark 1.2.26 We found throughout the proof that another description of Indy,(C) is the cate-
gory of presheaves ¢ such that Un(¢) is a U-filtered category. In fact, the above shows that this
description stands even if C has not enough ¢/°P-shaped colimits and U is not necessarily sound.
We refer to Rezk’s manuscript [Rez21] for a more general picture (including what happens when
U is not sound).

1.3 Accessible and presentable categories

Recall that we write Ind,(C) for the s-filtered colimit completion of C.

Definition 1.3.1 A category C is k-accessible for a regular cardinal k. if there exist a small Cy
and an equivalence C ~ Ind,(Cp). It is accessible if it is x-accessible for some &.

A functor F' : C — D between k-accessible categories is k-accessible if it preserves k-filtered
colimits.

In particular, k-accessible categories have rk-filtered colimits. Moreover, every object is a k-
filtered colimit of small objects. In fact, this characterizes them:
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Proposition 1.3.2 A category C is k-accessible if and only if if there is a set of kK-compact objects
S such that the smallest category closed under x-filtered colimits containing S is all of C.

Proof. This is straightforward. O

Let us now run through inheritance properties, which we will not prove (they are listed in the
order of appearance of §5.4 in [Lur08]).

Proposition 1.3.3 Suppose C is accessible and K a small category, then
1. Fun(K,C) is accessible.
2. If p: K — C is a functor, C/, and C,, are accessible.

3. If C — D + (' is a span of accessible functors between accessible categories, so is the
pullback C xp C’ as well as the projections.

4. Small coproducts of accessible categories are accessible.

5. Accessible categories are closed under small products in Cat, thus small limits thanks to
the previous points.

6. If p: K — CAT takes values in the subcategory of accessible categories and accessible
functors, then both

lax lim(p) := Fun,x (K, Un“"(p)) oplax lim(p) := Fun,x (K, Un(p))

are accessible.

Definition 1.3.4 A category C is presentable if it is accessible and admits small colimits. A
presentable category C is k-compactly generated if it is k-accessible.

m Example 1.3.5 The category S is presentable, and so are all the functor categories Fun(X,S) by
Proposition [I.3.3] and the fact that colimits are computed pointwise. [

By Theorem if C is a small category with s-small colimits, then Ind,(C) has all small
colimits and by definition is accessible, hence is presentable. The converse is true, as we explain,
and there is a canonical, maximal candidate for any presentable category: its full subcategory of
compact objects.

Lemma 1.3.6 Suppose C is k-compactly generated, then C ~ Ind,(C"*), where C* denotes the full
subcategory of k-compact objects in C.

Proof. Note that C* has s-small colimits by Lemma The universal property provides
a colimit-preserving map Ind,(C*) — C which is the identity on C*. By Proposition both
categories are generated under s-filtered colimits by C* so this functor is essentially surjective but
it is also fully-faithful by virtue of the explicit formula for mapping spaces in Ind, (C*). O

m Example 1.3.7 We have seen that S is compactly-generated (i.e. kK = w) in Proposition m [

Theorem 1.3.8 — Simpson. A category is presentable D if and only if it arises as an accessible
left Bousfield localisation L : P(C) — D of a presheaf category.

Proof. Here, we use the term Bousfield localisation to stress that we want the localisation to
have a right adjoint which is necessarily fully-faithful, and the accessibility is the condition that the
right adjoint has to be accessible. It is clear that accessible left Bousfield localisation of presheaves
have colimits, computed by the formula L(colim R(X,)), hence are presentable.

Reciprocally, fix  such that D ~ Ind,(D"). Note that D" admits k-small limits, therefore by

Theorem [1.2.25] we get that
Ind, (D) ~ Fun""™((D*)°P, S)
But the right hand side is the full subcategory of P(D*) spanned by those objects which are local
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with respect to
colim j(f(x)) — j(colim f(z))

where f : K :— D" ranges over k-small diagrams. This concludes. O

Let us also give the following criterion for k-compact generation, which was a folklore result
that first appeared in this version in [CDH™23| to our knowledge:

Proposition 1.3.9 Let S be a set of k-compact objects in a cocomplete category C. Suppose S
jointly detects equivalences, i.e. f: X — Y is an equivalence if and only if for every s € S, the
map

f« : Map(s, X) — Map(s,Y)

is an equivalence. Then, C is k-compactly generated.

Proof. Denote Cg the smallest full subcategory of C closed under k-small colimits of objects S.
There is a colimit-preserving, fully-faithful « : Ind, (Cs) — C and to check it is an equivalence,
it suffices to see that id¢ is left Kan extended from its restriction along Cg, i.e. that for every
X € C, the map
colim t— X
(t—X)€eCs XCC/X
is an equivalence. Note that since it has k-small colimits, Cg is k-filtered and therefore, this also
holds for Cs x¢ C/x. In consequence, using that every object of Cg is x-compact, it suffices to show
that the natural map
colim Map(—,t) — Map(—, X
(t—>X)€Cs><cC/X p( ) p( )
of Cg-presheaves is an equivalence. We have already established this formula in Proposition [[.1.6]
up to the Yoneda lemma to transform Nat(j(t), (X)) into Map¢(t, X). O

Corollary 1.3.10 The singleton {[1] = {0 — 1}} detects equivalences in Cat, the category of
small categories. Hence Cat is compactly-generated (and by one point!).

When further restricting to Cat™, the situation is even simpler: the singleton {Sp"™}
detects equivalences in Cat™. Hence Cat™ is also compactly-generated by one point, and it
is its unit for the canonical symmetric structure (see and the discussion that follows).

Proof. Suppose F' :C — D is a functor such that Ar(F)~ : Ar(C)~ — Ar(D)™ is an equivalence
of underlying groupoids. In particular, since this functor is surjective, for every Y € D, there is
an equivalence o : X — X’ which maps to idy. In particular, F(X) =Y so that F' is surjective
hence it suffices to check that F is fully-faithful to get the first point.

By assumption, for every f: X —Y,g: Z — T, F induces an equivalence

ISOAr(C)(fa g) — ISOAr(D) (F(f)v F(g))

between the subspaces of equivalences in the mapping spaces in the respective arrow categories.
But note that Map(X,Y) is a retract of colim fenap(x,v) IS0ar(c)(f; f) since there is a map

li Isoarer(f, f) — Map(X,Y
sesolim | Tsoa ) (fs f) ap(X,Y)

projecting on the first component which has a section which informally sends f : X — Y to the
square:

In consequence, the map

is a retract of an equivalence hence an equivalence itself. This gives the first part
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We can play a similar kind of trick with even less assumptions if we suppose that F': C — D is
exact between stable categories (in fact product-preserving between additive categories suffices).
If I~ :C™ — D~ is an equivalence, then F' is surjective.

This time, we use that the projection Iso(X ® Y, X ®Y) — Map(X,Y), obtained by postcom-
posing by X @Y — Y and precomposing by X — X @Y, has a section which sends f to

f €Map(X,Y) — <(1) {) elso(XaY,X®Y)

We also get that our wanted map is a retraction of an equivalence, hence an equivalence itself.
This concludes. O

Remark 1.3.11 After writing the above, we learned from [Aok25l Lemma 2.4] of the following
different proof, based on Proposition[I.1.19] which is too pretty not to share. Viewing categories
as complete Segal spaces produces a fully-faithful functor Cat — Fun(A°P,S) sending C to
Fun([e],C)=. This functor has a left adjoint by Lemma since being a (complete) Segal
object is being local with respect to inclusion of the spines [1] x[ 0]... x[ 0][1] — [n].

Note that the inclusion preserves filtered colimits as each [n] is compact in Cat, hence the
left adjoint preserves compact objects. In particular, it follows that Cat is generated under
colimits by the image of the compact generators of Fun(A°P,S) which, by Proposition
are the [n]. But [0] is a retract of [1] and [n] is in a finite colimit of [1] hence we are done.

We now turn to one of the nicest feature of presentable categories, namely the adjoint functor
theorem. For this, we will first need the following, which we essentially already proved in Theorem

L.2.29

Proposition 1.3.12 Let C be a presentable category and F' : C°? — S a presheaf. Then, F is
representable if and only if F' preserves small limits.

Proof. Representable functors preserve limits (without hypotheses on C), we now work for the
converse. By definition, F' is representable if and only if it lies in the image of j : C — P(C), hence
we have to show that if C is presentable,

C — Fun®(C?,S)

is an equivalence. By assumption, C = Ind,(C") so that by a game of ops, the right hand side also
identifies with the category Fun”~""((C*)°P,S) of k-small limit preserving functors out of (C*)°P

But now, we can appeal to Theorem (see Example for the soundness claim): C*
has x-small colimits by presentability so that we have an identification

Ind,,(C*) ~ Fun"~"™((C*)°P, S)
induced by the Yoneda embedding. Combining the two results concludes. O
In particular, we have shown C ~ Fun®(C°P, §), so we get immediately:
I Corollary 1.3.13 Presentable categories admit all small limits.

The dual situation is slightly more complicated. We would like to argue with opposites every-
where but C°P need not be presentable if C is. However, note that if C is k-compactly generated,
then C* is closed under x-small limits in C ~ Ind,(C"), since in the latter x-small limits are
computed pointwise in Fun((C*)°P, S) where it is clear that C* is closed under limits.

We write Pro,(C) := Ind,(C°P)°P and we note that C — Pro,(C) exhibits its target as the free
completion of C by k-cofiltered limits.

Proposition 1.3.14 Let C be a presentable category and F' : C — S a copresheaf. Then, F is
corepresentable if and only if F' preserves small limits and is accessible.

Proof. If FF ~ Map(X,—) for some X € C then it preserves limits and since C is presentable, X
is necessarily k-compact for some s hence F' is also k-accessible.

Reciprocally, fix £ such that both F' is r-accessible and C is k-compactly generated. We note
that the restriction F' : C* — S preserves x-small limits by the above and it suffices to check it is

20



corepresented. We let Un(F') — C be the left fibration classifying F' and consider the object of C,
which exists by Corollary [1.3.13

X = lim x
(z,a)€Un(F)
zeCr
of Un(F') restricted to those objects which are underlying k-compact. Differently stated, this is
the limit in C of the canonical functor obtained by pulling back Un(F') over C*.
Since F preserves limits, the collection of (z,«) € Un(F) with z € C* determines a point @ in
the limit F(X). Therefore the Yoneda embedding provides a map:

a@: Map.(X,—) — F

through which all of the maps a : Map(z, —) — F with € C” factor. Since C is k-compactly-
generated, we can write X as a k-filtered colimit of k-compact objects x; but F' is also x-accessible
hence @ € F(xzy) for some k € K meaning @ factors through Map(xy, —).

But the restriction G := F|¢~ is a colimit of corepresentable functors Map(yx, —), yx € C*
which provides a map G — Map(X, —) and therefore a diagram

G — Map¢(X,—) — Mape(z, —) — G

We claim that this composite is the identity. It suffices to check that after precomposing by
Map(yx, z—) — G, we recover the canonical map to G; but this follows from the universal property
of X: any composite Map(zy, —) — G factors uniquely through Map(X, —).

To conclude, note that C* is idempotent-complete: it is closed under retracts in a category with
small colimits. In consequence, we find a natural equivalence 7 : G ~ Map(z},, —) where z}, € C*
is the retract of xj corresponding to the previously built idempotent. The claim now follows since
both the source and the target of 7 are k-accessible and therefore left Kan extended from their
restriction to the k-compact objects of C. O

Corollary 1.3.15 — Adjoint Functor Theorem. Let F' : C — D be a functor between presentable
categories, then

e F has a right adjoint if and only if it preserves small colimits

e F has a left adjoint if and only if it preserves small limits and is accessible

Proof. We prove the second point. For any X € D, the composite Map(X,F(-=)) : C —» S
preserves small limits and is accessible hence is corepresented by some object suggestively denoted
FL(X). But note that the natural equivalence

Map(X, F(~)) =~ Map(F*(X), -)

upgrades the FL(X) to a functor in X, since it shows the functor D°P — P(C°P) lands pointwise
in corepresentables (namely by F(X)), hence factor through some D°° — C°P which is our F¥
up to a op. A dual argument deals with the other point. O

Definition 1.3.16 We let Pr™” denote the category of presentable categories and colimit preserving
functors. We write Pr®® for the category with the same objects but limit-preserving accessible
functors.

Since taking adjoint is a functorial process, we get an equivalence Prt ~ (PrR)Op.

Lemma 1.3.17 The categories Pr* and Pr® have small limits and they are preserved by the
forgetful functors Pr® — Cat, Pr* — Cat. In consequence, they also have small colimits which
are computed by taking adjoints everywhere and then forming the limit in Cat.

Proof. By Proposition [1.3.3] we know that accessible categories are closed under limits along
accessible functors in Cat. Hence, to conclude, we have to show that given a diagram C : K — Cat
in either category, limyec i Cr has small colimits and the projection functors

7 ¢ lim Cp — Cg
keK
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preserve small limits if the transition map do and small colimits if the transition maps do.

By Lemma and its dual for limits, limge i C, is equivalently given by Fun,4 (A, Un(C)) ~
Fun  op (A%, Un“*"*(C)); the colimit claim now follows from [Lurl8al, Corollary 7.1.10.3/06AR]
and the limit one is deduced from the other by a game of op’s. O

In particular, we get from the above a higher categorical kind of additivity:

Corollary 1.3.18 Let K be a space and F : K — Pr¥ be a functor. Then, there is a canonical
equivalence
colimg F —— limg F

In particular, in Pr, arbitrary products and coproducts coincide.

We now turn to the symmetric monoidal structure of Pr. We first note that if Cy, Dy are
categories with k-small colimits, then there is a category Cyo ®" Dy with k-small colimits and a map
Co X Dy — Cy ®" Dy satisfying the following universal property

Fun—colim (Co ®" Dy, €) —= 5 Fup®—colim (Co, Funf—colim (Do, €))

for every £ with k-small colimits. This follows readily from Theorem [I.2.2] Of course, this holds
more generally for all small colimits, and the following claims it restricts nicely to the presentable
setting:

Proposition 1.3.19 Let C, D be presentable categories, then there is a presentable category C ® D
and a functor n : C x D — C ® D preserving colimits in each variable which induces for any
presentable £:

n* : Fun®(C ® D,€) —=— Fun®(C,Fun’(D, £))

Moreover, (PrL, ®) is a symmetric monoidal category with unit S, which restricts to the full
subcategories Pri‘ spanned by k-compactly-generated categories. In particular, if C,D are
compactly-generated, so is C ® D and 7 sends C* x D" to k-compact objects.

Proof. The existence of such a category follows readily from Theorem by freely adding all
small colimits to C x D while enforcing that colimits in one variable are colimits. In particular, we
note that C x D — C ® D is not fully-faithful but verifies the universal property:

Fun*(C ® D, &) = Fun"™(C x D, €)

where the superscript bili refers to the full subcategory of those functors C x D — £ which preserve
colimits in each variable, which is equivalent to the wanted category.

By fiat, C ® D has all small colimits. We check it is accessible: the explicit construction of
Theorem shows that C x D identifies with a full subcategory of presheaves on C x D spanned
by a collection of local objects, namely those ¢ : C°? x D°? — S which send colimits in either C or
D to limits. Fixing a x such that both C and D are k-compactly generated, we find

C® D ~ Ind,(C" ®" D)

from which the presentability is immediate, and in fact the restriction to the full subcategory of
r-compactly generated categories as well. Note in particular that the image of C* x D" lands in
the k-compact generators of C ® D.

The universal property of S from Proposition [I.1.5] implies readily the unit claim. More gen-
erally, the symmetric monoidal structure is induced by the cartesian one on Cat, so for instance
the symmetry comes from the equivalence C x D ~ D x C. We leave the reader figure out how to
make this into a precise proof. We note however that S is w-compactly generated and the tensor
product preserves x-compactly generated categories hence this structure restricts. O
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Remark 1.3.20 There is a more explicit formula for the tensor product C ® D, namely as the
functor category Fun®(D°P,C). Indeed, note that the expression of the above proof also iden-
tifies C ® D as Fun®(C°P, Fun®(D°P,S)). By Lemma this category is equivalent to
Fun®(C°P, D).

Note that we had already seen that Fun®(D°P,S) ~ D, even before the adjoint functor
theorem.

The universal property of the tensor product implies that P(C) ® P(D) ~ P(C x D), which
upgrades to show that P : Cat — Pr¥ is symmetric monoidal. More generally, Ind, acquires a
symmetric monoidal structure from small categories with k-small colimits and ®" as tensor product
to k-compactly generated categories with the above restricted tensor product.

Lemma 1.3.21 Suppose C, D are presentable, then the category Fun™(C, D) of left adjoint functors
is presentable. In particular, Pr" is closed.

Proof. Note that Fun™(C, D) is cocomplete with pointwise colimits so we only have to focus on
accessibility. Fix k such that C,D are k-compactly generated, then we have

Fun"(C, D) ~ Fun”"~ ™ (c*, D)

By Proposition the category Fun(C*, D) is accessible. Fix p : K — C" a small diagram, then
we claim that the full subcategory of Fun(C*, D) which send p to a colimit diagram is accessible
and so is the inclusion; indeed, there is a pullback square

Funp%colim (CK, D) Funcolim (KD, D)

| |

Fun(C*,D) ——  Fun(K",D)

where the top right category is spanned by those colimit diagrams K* — D. In particular, this
category is equivalent to Fun(K, D) and the right vertical map has a right adjoint so that the above
pullback is of accessible categories, hence Fun? ™ (C* D) is itself accessible by Proposition
and the map to Fun(C”, D) accessible as well.

But now, the wanted category is again a limit, along accessible functors, over all the possible
choices of p. Another instance of Proposition [1.3.3] concludes. O

In particular, Pr" is enriched in itself. In turn, more is true: Pr,I; is k-compactly generated (in
particular presentable); we refer to introductory lecture of [Sch25] for a deeper look at this.

1.4 Dualizable and compactly-generated stable categories

We write Cat™ for the category of stable categories and exact functors between them and
CatP! for the full subcategory of idempotent-complete such categories; this category is reflexive
and coreflexive. Thomason’s cofinality theorem describes the fiber of Idem : Cat™ — CatP*™,
the idempotent-completion functor which is left adjoint to the inclusion: over C, it is in bijection
with subgroups of Ky(C) ordered by inclusion.

Recall that given a pointed category with finite limits C, the terminal stable category Sp(C)
with a finite-limit preserving functor Sp(C) — C is given by the following limit:

Sp(C):lim(... Q.0 2,0 2 c)

and the functor is projection to the last term that we denote 2°°. Dually, if C is pointed has finite
colimits, there is an initial category SW(C), sometimes called the Spanier- Whitehead stabilization,
with a finite-colimit preserving functor C — SW(C) given by

SW(C):colim(C S, 2, % )

and we write X : C — SW(C) for the induced map from the first term; here the colimit has to
be taken in the category of finitely cocomplete categories and finite-colimit preserving functors. In
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general, even if C has finite limits and colimits, these two categories do not agree. Indeed, note

that an object of SW(C) is always a finite desuspension of an object of C whereas Sp(C) may have

objects which are never desuspensions of an object of C. This is already the case for C = S.
However, the following is always true:

Lemma 1.4.1 Let C be a category with finite colimits, then there is a canonical equivalence
Sp(Ind(C)) ~ Ind(SW(C))

In particular, the stabilization functor Sp restrict to a right adjoint Pri* — PrgX to the inclusion
hence a left adjoint Pr” — Prg, to the inclusion.

Proof. The functor Ind : Cati*°i™ _; Prl is left adjoint to the inclusion, so preserves colimits,
hence
Imd(SW(C)) ~ colim( md(C) —2— Ind(C) —=— Id(C) —=— ... )

but one has to be careful that this colimit is now taken in Pr", which are computed by taking right
adjoints and forming the limit by Lemma [[.3.17} But doing this, we recover precisely the formula
for Sp(Ind(C)) which concludes. O

Let us note that in particular, the canonical functor Q2 : Sp(Ind(C)) — Ind(C) is necessarily
right adjoint to Ind(2°°) : Ind(C) — Ind(SW(C)). In particular, 2> is accessible. If C is stable,
then so is Ind(C) hence defines a functor Ind : Cat™ — Prg,_. This functor factors through the
idempotent-completion one Idem and the resulting Ind : CatP*! — PrIéx is faithful with image
those categories which are compactly-generated and functors preserve compact objects.

m Example 1.4.2 The category of spectra Sp := Sp(S) is compactly-generated by SW(Sﬁ“), where
S denotes the category of finite spaces. In particular, it follows that Sp is generated under small
colimits by S := X°°(x), freely as a stable category, i.e.

evs : Fun®(Sp,C) —=— Fun(x,C)

for every cocomplete C. n

Remark 1.4.3 In fact, Lemma [I.4.1] is part of a more general phenomenon: if C is presentable,
then so is Sp(C), because limits in Pr® are computed underlying. In particular, Sp is a right
adjoint to the inclusion Priy, C Pr®, because it has the correct universal property already.
Here, we used that a functor D — limg C is accessible (resp. preserves limits) if and only if all
the projections D — C do, as we have seen in Lemma [[.3.17]

The following result is often known under the name Schwede—Shipley. They proved in [SS03]
a version of this result in model—category—lancﬂ; the oco-categorical claim can be found in [Lurl7,
Theorem 7.1.2.1].

Theorem 1.4.4 — Schwede-Shipley. If R € Alg(Sp), the category Mod(R) of (left) R-modules is
compactly-generated and the object R viewed as a R-module jointly detects equivalences.

Moreover, any cocomplete stable category with a single compact generator X is equivalent
to Mod(end¢(X)).

We will not prove this right now. We will prove a more precise version of the above in Propo-
sition ?7?, but this requires some enriched category theory, hence it will have to wait until we have
the time to develop this material. We note already one main consequence of this more precise
version, which can also be found in Proposition 7.1.2.4 of [Lurl7] and is a generalization of a result
of Eilenberg—Watts: any functor Mod(R) — Mod(S) is given by tensoring by a (R, S)-bimodule.

In fact, one can recover Eilenberg—Watts from our more precise version of Schwede—Shipley
(though maybe not from the above version) once it is combined with the fact proven in [BCKW25|
Corollary 7.4.12] that for a discrete ring R, the map Mod(R) — D(R) is the initial map with target
a presentable stable category which preserves filtered colimits and exact sequences.

2This is like Munchkinland but the yellow brick road has been cofibrantly replaced.
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Note that if {X;,...,X,} C C¥ jointly detect equivalences in a presentable stable C, then
X1@...® X, is a single compact generator of C. Hence, the presentable stable categories which are
not of the form Mod(R) are somewhat wild: they do not have finitely many compact generators.
In particular, since every category is the filtered colimit of its full subcategory generated by finitely
many objects, we get:

Corollary 1.4.5 A compact object in Prléf , the full subcategory of PrlﬁX spanned by compactly-
generated and compact-preserving maps, is necessarily of the form Mod(R).

Proof. A compact category C in PrIﬁx is necessarily a retract of a category generated by finitely
many objects, hence itself finitely generated. If C is further compact in Pr]é;‘:, then running the
colimit over compactly-generated subcategories abuts to the wanted conclusion, using that the
retraction preserves compact objects by fiat. O

plified by Corollary

Let us now investigate the symmetric monoidal structure:

I Remark 1.4.6 The above discussion fails spectacularly without the stable hypothesis, as exem-

Lemma 1.4.7 The canonical map X% : & — Sp exhibits the category of spectra Sp as an

idempotent object in (PrL, ®), so in particular, Sp has a unique commutative algebra structure
whose unit map is the previous one. In fact, a presentable category C is stable if and only if
C —Sp®C.

Proof. The first statement follows from the second, using that Sp is stable. Recall from Remark

320 that
Sp® C ~ Fun®(C°P, Sp)

In particular, this is a stable category so we get one side of the equivalence. On the other hand, if
C is stable, then
¢ = Fun®(C°?,S) = Fun®(C°P, Sp)

where the first equivalence is by Remark [I.3:20] and the second by Remark O

It follows that Plrléx inherits a tensor product from Pr" whose unit is Sp, the category of spectra.
Moreover, the stabilization functor Prl — PrIéX left adjoint to the inclusion coincides with Sp ®—.
Note that we could have gone a different route to build this tensor product more concretely, by
adapting the proof of Proposition [I.3.19]

In particular, adapting this technique shows that Cat™ and CatP! are symmetric monoidal
categories with variants of the Lurie tensor product, and the same unit Sp"™ ~ Sp“, the category
of spectra obtained from finite colimits from S, which happens to be idempotent-complete (this
was proven in Fabian’s lecture).

Lemma 1.4.8 The functor Ind : Cat™ — PrlﬁX is monoidal, with the monoidal structure canon-
ically induced by its pointwise universal property.

Proof. Since we have been rather cavalier with building the monoidal structure, let also be
cavalier with this claim: first, note that Ind commutes with products since these are computed
as direct sums in both Cat™ and PrII:]X. Moreover, if C,D are small stable categories and £ is

presentable then
Fun™(C @ D, ) ~ Fun®(Ind(C ® D), &)

but at the same times, the left hand side category is equivalent to
Fun®™ (C, Fun™ (D, £)) ~ Fun®(Ind(C), Fun"(Ind(D), £))

so that Ind(C ® D) and Ind(C) ® Ind(D) have the same universal property under the product.
Refining the argument lifts it to a monoidal structure. O

In particular, we find that if C,D are idempotent-complete, C @ D ~ (Ind(C) ® Ind(D))%,
where the right hand side is the tensor of presentable categories. Note that even if C and D are
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idempotent-complete, their tensor product need not be idempotent-complete either: in general,
the tensor in Cat™ in the smallest stable subcategory of Ind(C ® D) which contains the image of
C x D. Already if C = Spfi® is stable and D any non-idempotent-complete category, these differ.

Definition 1.4.9 Let C® := (C, ®) be a symmetric monoidal category. We say that X is dualizable
if there exists an object XV € C, two maps ev: X ® XV — 1 and coev: 1 - XV ® X and
homotopies between the composites

X® coev ev®X
—_—

X XX'eX ——— X

and idx as well as one between

XV®
\V2 ev

XV VXL v e X o X XV

and idxv.

This may look like a structure on X, but it is actually a property. Indeed, consider the 2-
category BC® with one point * and C® with endomorphism category. Then, X € C has an adjoint
if and only if it is dualizable; the unit and counit are the evaluation and the coevaluation and the
homotopies are the triangles identities. We can also do away with the 2-category and prove this
directly, as in the following:

Lemma 1.4.10 Suppose that C® is a closed symmetric monoidal category. Then, if X is dualizable
in C, we have an equivalence
XY ~ Map(X, 1)

where Map denotes the internal mapping object. Moreover, an object X is dualizable if and
only if the map

Map(X,1) ® Y — Map(X,Y)

obtained by adjunction from ev®Y : (Map(X,1) ® X) ® Y — Y, is an equivalence for every
Y.

Proof. For the first claim, it suffices to check that if X is dualizable, then — ® X is left adjoint
to — ® XV. We claim that the natural map as follows:

(Z@Cvx)*
E—

Map(V, Z ® XV) —2% 5 Map(Y ® X, Z® XV ® X) Map(Y ® X, Z)

is an equivalence. Its inverse is given by

(Y®coevx)
—

Map(Y ® X, Z) —2X"5 Map(Y @ X © XV, Z ® XV) Map(Y, Z @ XV)

and the homotopy witnessing that both composite are the identity are deduced from the triangle
identities.

In fact, the above also works in the other direction: if — ® X has a right adjoint of the fornﬂ
— ® XV, then X is dualizable. In particular, note that it follows that if X is dualizable, there is a
chain of equivalences:

Map(Y,Map(X, Z)) ~ Map(Y ® X, Z) ~ Map(Y, Z ® Map(X, 1))

induced by the wanted map. Reciprocally, since the first equivalence always holds, this also implies
that — ® Map(X, 1) is right adjoint to — ® X hence concludes. O

Note also that the proof of the first claim did not need the closure for the adjunction to hold.
We are therefore also able to get very generally:

I Corollary 1.4.11 Any ®-invertible object is dualizable, with dual its ®-inverse.

Since equivalences are closed under retracts, so are dualizable objects. Moreover, note that if
C® is stable, then both sides of the equivalences are exact in X; resuming those properties, we get:

3There are counterexample to the statement when the right adjoint of — ® X is not assumed to be of this form
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Corollary 1.4.12 Dualizable objects are closed under retracts. If C® is stable, then they are also
form a stable subcategory of C

As the last bit of abstract definition about symmetric-monoidal categories, let us introduce
the following definition. We say that a symmetric monoidal category C is presentably symmetric
monoidal if C is presentable and the tensor product commutes with colimits in both variables, i.e.
if C% lifts to CAlg(Prp, ).

I Definition 1.4.13 A stable, compactly-generated category C with a presentably symmetric monoidal
structure is said to be rigid if every compact object is dualizable and 1¢ is compact.

Presentably symmetric monoidal categories are always closed: the functor X ® — preserves
small colimits hence by Corollary [[.3.15 it has a right adjoint.

Readers aware of a different definition, tailored to smaller categories, will be happy to hear
about the following lemma:

Lemma 1.4.14 Suppose C® is small such that every object is dualizable. Then, Ind(C)® is rigid.

Proof. We note that the monoidality claim of Lemma adapts straightforwardly to non-
stable categories when replacing the source with Cat®F* of finitely-cocomplete categories and
right-exact functors between them. Therefore, if C® € CAlg(Cat™™), then Ind(C)® := Ind(C®)
CAIg(PrL) in such a way that the symmetric monoidal structure restricts to the one on C® via
Yoneda embedding (in particular, the units coincide). It follows that the image of C is dualizable,
and it suffice to remark that dualizable objects are necessarily closed under retracts to conclude. [

m Example 1.4.15 The category S is not rigid, since Map(X, %) ~ « for every X. In fact, no cartesian
closed category is, unless they are trivial.

On the other hand, when endowed with its canonical structure, the category Sp is rigid: indeed,
recall that Sp* ~ Spfi® and that X is dualizable if and only if

map(X,S) ® Y ~ map(X,Y)

is an equivalence for all Y. But both functors map(X,S) ® — and map(X, —) preserve colimits
when X is compact, because Sp is stable and the above holds for Y = S, hence generally. In
fact, note that if X is dualizable, then map(X,S) ® — preserves all small colimits, therefore since
Q> : Sp — S preserves filtered colimits, X is compact. [

Remark 1.4.16 The converse part of Example holds more generally. Suppose 1 is compact
and let X be dualizable in a presentably symmetric monoidal C, then Lemma provides
an equivalence

Map(X, 7) = Map(]]-v - ® Map(X7 I]-))

so that X is in fact compact.

I Proposition 1.4.17 Let R be a ring spectrum, then Mod(R) is rigid.

Proof. Since R € Mod(R) is compact, every dualizable is compact as well. Reciprocally, given a
compact M € Mod(R), then M induces a colimit-preserving functor M ® — : Mod(R) — Mod(R)
which further preserves compact objects. In particular, its right adjoint given by Corollary
preserves filtered colimits, but it is also exact. Hence, using Schwede-Shipley (but not Theorem
the stronger Proposition ?? which implies the higher categorical Eilenberg-Watts), it is of
the form N ® —. This is precisely the dualizability criterion of Lemma [T.4.10, which concludes. O

m Example 1.4.18 The category SpBSl is not rigid: the unit is the constant functor equal to S, i.e.
the sphere with the trivial S'-action which is not compact. Differently stated, its right adjoint
(=)"S" does not preserve filtered colimits.

To see this, note that every S'-spectrum is a filtered colimit of finite colimits of induced S'-
objects, i.e. of the form S' ® X with the action on the left factor; this is because taking induced
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objects is left adjoint to a conservative functor. But S™V not a retract of such finite colimits of
induced objects, since such a retraction cannot be compatible with the actions. [

Our goal in the rest of this section is study dualizable objects of Cat™ CatP*f and Prk, (or
more precisely, to barely scratch the surface in their study). Before that however, we make a small
detour to collect some facts about coends.

If C is a category, we write TwAr(C) for the twisted arrow category on C: our convention is that
TwAr(C) — C°P x C is the right fibration classifying Map, and therefore, a map from X — X’ to
Y — Y’ in TwAr(C) is a diagram

X — X

]

Yy — Y’

exhibiting the source as factoring through the target. This convention is one of the two possible
(the other taking the left fibration); we made this choice so that the following definition is nicer
for the objects we will use the most; the dual convention switches TwAr(C) and TwAr(C)°P.

Definition 1.4.19 Let F': C°P? xC — D be a functor, then if it exists, the coend of F' is the object
of D defined as follows:

Xec
/ F(X,X):= colim F(Y,X)
(p:X—=Y)eTwAr(C)

The end is rear the following object

F(X,X):= lim
xXec (p: X —=Y)eTwAr(C)op

F(X,Y)

One of the most important example of ends is the space of natural transformations. Note
that for every X € C, there is a map Nat(F,G) — Mapp(F(X),G(X)) evaluating the natural
transformation. This collection of maps upgrades to a map

Nat(F,G) — Mapp (F(X), G(X))
XecC
Indeed, given a map p: X — Y, we can refine the above map to Nat(F, G) — Mapp(F(X),G(Y))
by sending 1 to F(X) — G(X) — G(Y), and we leave the reader write out the proper way to
make this functorial in maps of TwAr(C)°P. We claim:

Lemma 1.4.20 Given F,G : C — D, the above map is an equivalence, i.e.

Nat(F, Q) ~ e Mapp (F(X), G(X))

Proof. The proof strategy is that of [GHN17]. By the dual of Lemma the limit of the

functor

F.G M
(F,G) ap

TwAr(C)°P — CoP x C°P =% DoP x D S

is the category of sections of the cocartesian fibration (which is just a left fibration). Using that
such fibrations are closed under pullbacks, we get that this category is equivalent to the category
of lifts

N TwAr(D)

(F.G) l

TwAr(C) —— € x ¢ 29 pop x D

This is equivalently a map between left fibrations, by pulling back TwAr(D) over C°? x C; in
particular, by straightening, we have gotten an equivalence

Nat(Mape, Mapp(F,0)) = | Mapp(F(X), G(X)
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Currying in the contravariant variable, we see that the left hand side is also
Nat(jc, F*ojpo G)

in the category of functors C — P(C). We conclude by remarking that left Kan extension along F’
of a presheaf represented by X is represented by F(X), so that using the adjunction between left
Kan extension F} and F* and the fully-faithfulness of the Yoneda embedding, we deduce

Nat(F,G) = [ Mapp(F(X),G(X))
Xec
We let the reader track the canonical maps from the right hand side to each Map(F(X),G(Y))
along (un)straighening to see that we proven that the correct map realizes the above. O

Remark 1.4.21 Suppose D is stable, then Fun(C, D) is stable and the spectrum of natural trans-
formations satisfies

nat(F, G) ~ /X _ mapp(F(X),G(X)

Indeed, the right hand side is exact in both F' and G and since 2°° commutes with ends,
recovers the space of natural transformation by the above.

Lemma 1.4.22 — Coend Yoneda Lemma. Any presheaf F': C°P? — S satisfies:
XecC
F(-)= [ PLX)x Mape(~, X)
If C is stable, then the above result also applies to exact F : C°? — Sp as follows:
Xec
F)= [ P00 @ mape(-. X)

where the tensor product is pointwise in Sp and map, the spectrally enriched mapping object.

Proof. We remark that

XeC
Map( [ F(X)x Mape(Y,X),2) = | Map(F(X) % Mape (Y, X). 2)
XecC
Using the expression of the space of natural transformations we gave previously, the latter term is

equivalently given by
Nat(MapC (Y7 _)a Map(F(_)7 Z))

The actual Yoneda lemma now implies that this is none other than Map(F(Y'), Z) and this chain
of equivalence is natural in Y, Z, which concludes. The stable case is in all point similar, using the
spectral Yoneda, the tensor product in Sp and Remark O

Finally, we reach the content we wanted to explain in this section:

Proposition 1.4.23 Let C be a small stable category, then Ind(C) is dualizable in PrlﬁX with dual
Ind(C°P).

Proof. Using the monoidality of Ind of Lemma [1.4.8] we are reduced to specify two colimit-
preserving functors ev : Ind(C ® C°P) — Sp and coev : Sp — Ind(C ® C°P) and prove the relevant
identities hold. The second map is just a point in Ind(C ® C°P) ~ Fun®™(C°? ® C, Sp) and we take
the one corresponding to map, : C°® ® C — Sp, the mapping spectra functor. For the first map,
we take the unique extension of map, to a colimit-preserving functor out of Ind(C ® C°P) instead.

Let us now give a more concrete description of those two functors. We claim that the functor
ev : Ind(C ® C°P) — Sp takes an exact presheaf F': C°P? ® C — Sp and computes its coend:

XecC
/ F(X,X)~ colim FY,X)
(p:X—Y)eTwAr(C)
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If F is represented by (X,Y’), then it coincides with
mapC0P®C(_a (Xv Y)) = mapC(X7 _) ® Hlapc(—, Y)

thus this coend coincides with map(X,Y’) by the coend Yoneda lemma [1.4.22l Moreover, the

functor F' — [ Xee p (X, X) is colimit-preserving, hence it coincides globally with the ev we picked.
Finally, we check that the following composite is the identity (and leave the other one to the
reader)

Ind(C) —— Ind(C® C°* ® C) ——— Ind(C)

which sends F': C°? — Sp to the presheaf
YecC
X|—>/ map.(X,Y)® F(Y)

The coend Yoneda lemma gives precisely the equivalence we are looking for. O

One could also envision a strategy relying on Lemma [I.4.10] to prove Proposition [[.4:23] We
will need the more explicit formula of the evaluation and the coevaluation which is why we wrote
the proof this way; but the other strategy is generally useful to see what fails for higher cardinals,
as we explain in the following Remark.

Remark 1.4.24 The analogue of Proposition [I.4:23] generally fails for Ind,, when x > w. The
clearest claim is the identification of the dual: Ind, (C°P) does not coincide with Fun(Ind,(C), Sp)
if Kk > w, because one is k-small colimits preserving functor C — Sp and the other is x-small
limit preserving functors C — Sp.

In fact, by Lemma [1.4.10, we can check whether Ind,(C) is dualizable by comparing
Fun™(Ind,(C), Sp) ® D ~ Fun®(D°P, Fun®(Ind, (C), Sp))

and
Fun™(Ind,(C), D) ~ Fun®(Ind, (C), Fun® (D°?, Sp))

But of course, we cannot curry because neither colimits in right-adjoint functors nor limits in
left-adjoint functors are computed pointwise. When x = w, the miracle of stable categories
happens: finite limits and finite colimits commute and the commutation is legitimate (hence
realizing the aforementioned proof).

Let us also mention that there are more dualizable objects in Pry, than Ind(C) for a small C:
every kernel of a strongly-continuous localization between compactly-generated category is dual-
izable, as a retract in PrIFjX of a compactly-generated hence dualizable category. However, not all
of them must be compactly-generated; examples abound and many predate the advent of higher
category theory (almost ring theory, sheaves of spectra on a locally compact Hausdorff space, many
kernels of localisations of derived categories of rings), we refer for instance to [Efi24] Section 1.5]
for more material.

Finally, we dedicate the rest of this section to answering dualizability questions in categories
closely related to Prréx: the first comes at the insistence of a secret admire of this course.

In [Ste20, Proposition 5.1.4], Stefanich shows that a category C in CAT®"™  the (very large)
category of large categories with small colimits and small colimits preserving functors, is presentable
if and only if it is kg-compact for kg the smallest large cardinal. The tensor product of Pr’ is
compatible with the one of CAT®"™ (essentially by construction given the proof of Proposition
, hence since S is itself presentable, Lemma guarantees that all the dualizable objects
of CAT®!™ are presentable. The stable analogue of the above follows immediately from a version
of Stefanich’s result, whose proof can be done in the exact same way.

Having dealt with the very large, let us also discuss other, smaller analogues of Prk, . We
introduce the following definitions, originally by Kontsevich:

40nly his admiration is secret
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Definition 1.4.25 A category C is said to be proper if map, lands in Spfi* = Sp“.
A category C is said to be smooth, resp. finite-smooth, if map, is a compact object of
Ind(C ® C°P), resp. in the image of the Yoneda embedding of C ® Idem(C°P).

Since dualizability is a property and Ind(—) preserves dualizable objects, dualizability in Cat™
and CatP*™! is only a question about whether the objects and functors we defined in Proposition
[[-4:23] descend to either finite or compact objects.

An idempotent-complete category is fully determined by its Ind-completion via taking compact
objects; furthermore every dual in Cat® is idempotent-complete because it must be of the form
Fun®™(C, Spfi") where Sp'™" is idempotent-complete. This has the surprising consequence that every
dualizable category in Cat™ is automatically idempotent-complete. Hence we have:

Corollary 1.4.26 Dualizable objects of Cat™ are precisely the finite-smooth and proper cate-
gories. Dualizable objects of CatP®™ are precisely the smooth and proper categories. In both
cases, the dual category is the opposite and every such category is automatically idempotent-
complete.

Remark 1.4.27 In particular, because they must be idempotent-complete, finite-smooth cate-
gories have the property that map. lands in the full subcategory of Ind(C°P ® C) spanned by
C°? ® C; because this is a stronger property, we could have alternatively defined finite-smooth
this way and at least under the properness assumption, gotten the same property.

Since the unit Spfi of both categories is compact, (finite-)smooth and proper implies compact,
so in particular by the same argument as Corollary they are either of the form Mod(R)%", the
smallest stable subcategory of Mod(R) containing R, in the first case or Perf(R), its idempotent-
completion, in the second.

In the other direction, compact objects of Cat?"f are smooth by an argument due to Toén and
Vezzosi (see also [KNP24, Lemma 4.7.4]); note that smoothness only depends on the idempotent-
completion and Idem(—) preserves compact objects hence this also holds for compact objects of
Cat™. Compact on the other hand does not imply proper: let Fun(BS?,Sp)® be the category
of spectra with a SZ?-action. Then, since S? is compact, so is this category and it is actually
generated under finite colimits and retracts by S[252]. But the underlying spectrum of S[{2.5?] is
not bounded-below hence cannot be compact (as any finite colimit or retract of S is bounded-below)
— in particular, Fun(BS?2, Sp''") is not proper.

m Example 1.4.28 We had seen in Example that Spfi™ was finite-smooth (it is even a pure
tensor) and it is clearly proper since map(S,S) = S € Spfi™ and this therefore holds for every finite
colimit of S in each variable. We already knew that Spfi™ was dualizable in Cat®™ since it is the
unit, so everything is coherent so far. [

m Example 1.4.29 Let X be a smooth and proper scheme. Then, Perf(X) is a smooth and proper
category and the converse holds by work of Kontsevic}ﬂ We refer to Lurie’s [Lurl8bl Chapter 11],
for instance Proposition 11.3.2.4 or Theorem 11.4.0.3, and more generally the whole chapter for a
discussion of smooth and properness.

The notion of finite-smoothness is significantly more restrictive: it contains the case where X
admits a full exceptional collection, or differently stated where Perf(X) is the smallest subcategory
of Cat™ containing Sp™ and Ar(Spfi™) and closed under semi-orthogonal decompositions. We do
not know whether this is necessary. [

Let us reiterate that dualizable objects of PrIéX are not necessarily compactly-generated cat-
egories; their first thorough study was done in [Lurl8b]. In recent years, a lot of development
has been happening in this direction, impulsed by ideas of Efimov, see for instance [Efi24]. It
is not our intent to give a course on such ideas, and we refer instead to the course notes by
Krause—Nikolaus—Piitzstiick [KNP24] instead.

5The only reference I am aware of by Kontsevich himself is a talk he gave for the birthday conference of Deligne
in 2005, a video of which is available (at the time of writing) on the IAS website, and notes can be found on the
THES websitel
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Remark 1.4.30 Observe that a smooth and proper category has the following property: a co-
presheaf C — Sp is corepresentable if and only if it lands in Spf®. This is because the identi-
fication of the dual C°P ~ Fun®(C, Sp™"); of course the dual statement applies to presheaves
and representable functors since C°P is again dualizable.

Essentially copying our proof of Corollary [[.3.15 we deduce that every exact functor C — D
between smooth and proper categories has a left and a right adjoint (and therefore infinitely
many in each direction) — the first fact actually only requires D to be proper. Therefore, every
object of a smooth and proper category is compact since map(X,—) has a right adjoint (in
particular, every filtered colimit in C must retracts onto one of its terms so there cannot be a
lot of them).

In fact, the category of exact functors C — D between smooth and proper categories identifies
with C°? ® D via the functor induced from

(X,Y) €C® x D+ map.(X,—) @Y € Fun™(C, D)

To understand the procedure of taking adjoints in the above, just note that this is a composite
C — Spfi™ — D where Spfi® is smooth and proper hence we are reduced to understand what is
the right adjoint of map(X, —) or the left adjoint of Y ® —. This is in general non-trivial.

It is an interesting exercise, that we recommend to the reader to try to compute iteratively
the left and the right adjoints of the source projection s : Ar(Spfi*) — Spfi*, which is the functor
corepresented by ids : S — S. This gives a non-periodic infinite chain of adjunction, but with
period six, the next adjoint is given by a shift (either a suspension for left adjoints or a loop for
right adjoint). Interpreting an arrow f as a diagram

QY fib(f) x 1oy cofib(f) X

then taking left adjoint twice in the above chain corresponds to projecting on the term to the right
by one (and right adjoints go left). Applied to f : S — S, which corepresents s, it also holds that
taking left adjoint twice corresponds to looking at the functor corepresented by the next arrow
to the left (and right adjoints go to the right now). This describes the entire chain since the left
adjoint of a corepresentable functor is just given by tensoring with the corepresentable.

Remark 1.4.31 Smooth and proper categories are precisely the compact idempotent-complete
stable categories which are enriched in compact spectra, hence they are in the sense the correct
categorification of compact spectra. A similar result holds for finite-smooth and proper, as we
now explain.

It is a result of Efimov, which also follows from Lurie’s generalized Wall obstruction (see
[Ram25] for an account of this), that a compact stable category is in the smallest subcategory
of Cat™ closed under pushouts, direct sums and containing Sp™ and Ar(Spfim), if and only it
is finite-smooth.

In particular, finite-smooth and proper subcategories are those compact categories which
are both finite and enriched in finite spectra, hence the correct categorification of finite spectra
(which, naturally are also the compact spectra, but very much not here).

2 Topological Hochschild homology of stable categories

2.1 A plethora of formulas

Fix (C,®) a symmetric monoidal category and X € C dualizable.

Definition 2.1.1 Let M : X — X be an endomorphism of X, then the trace of M is the
endomorphism of the unit

(M) 1 —2 5 XV x PMEM voxv e g

In particular, in Prlﬁx, traces of endomorphisms are colimit-preserving functors Sp — Sp, i.e.
just a point in Sp. For Cat™ and CatP®', it is a point in Sp*.
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Definition 2.1.2 Let C be a compactly-generated category and M € End"(C), then we let:
THH(C, M) := tr(M)
and we call this spectrum the topological Hochschild homology of C with coefficients in M.

Of course, the above definition makes more generally sense for endofunctors of dualizable cate-
gories. Actually, we will see later that THH is localizing, Efimov’s unique extension applies and at
least for coefficients in the identity, we would have recovered the extension for free. Note also the
following consequence of Corollary

Corollary 2.1.3 If C is smooth and proper and M : Ind(C) — Ind(C) is a colimit-preserving
functor who also preserves compact objects, then the spectrum THH(Ind(C), M) is compact.

Remark that End"(Ind(C)) identifies with Ind(C°P®C), either by using that Ind(C) is dualizable
or directly by currying, so that the explicit equivalence sends M € End"(Ind(C)) to the functor
exact in each variable map(—, M (-)).

Thanks to the proof of Proposition [[.4.:23] we therefore have:

Corollary 2.1.4 Let M : Ind(C) — Ind(C) be colimit-preserving, then
XeC
THH(C, M) ~ / map(X, M(X))

In particular, if Ind(C) ~ Sp, then THH(Spf", M) ~ M where we identified the colimit-
preserving M : Sp — Sp with its value at the generator S.

Let us make the following notational comment: we will often directly consider endomorphisms of
Ind(C) as functors M : C°? xC — Sp which are exact in both variables, and we write THH(C, M) for
the coend of M, although we note that this spectrum only really depends on Ind(C) or equivalently,
its compact objects Idem(C). Note in particular the following Corollary:

Corollary 2.1.5 Let C be a stable category and M a C-bimodule. Then,
THH(C, M) — THH(Idem(C), M)
is an equivalence.

On a different “fun” direction, we also note that the formula of Corollary 2.1.4]is very similar to
that of the very concrete traces of endomorphisms of finite dimensional vector spaces (up to turning
a sum into an integral, which is fortunately the notation for coends). In particular, the coend that
defines THH(C, M) implies that points of the associated infinite loop-space should correspond to
formal combination of maps X — M (X) subject to some identifications along maps X — Y. We
want now to be able to be more precise than this rough sketch, and for this we will first need a
technical input.

The technical input is the following formula, often known as the Bousfield-Kan formula, which
shows that any colimit decomposes as a geometric realization followed by a space-indexed colimit.
We will not fully prove this — the main reason is model-theoretic difficulties that can probably be
overcome but not without a hefty effort — but at least we attempt to explain parts of the proof;
the following result is Corollary 12.5 of [Sha23] which explains a complete proof (but see also §5
of [MG19] for a differently worded proof). We follow the account of [Hau2l], skipping the details
related to the combinatorics of A.

Proposition 2.1.6 — Bousfield-Kan formula. Suppose given a functor F : C — D with target
a cocomplete category. Let T, := Map(A™,C) so that the inclusion Ty ~ C~ — C yields a

composite
do

on Ty To C E D.

Then, the colim,, ¢,, assemble into a simplicial object as n varies whose geometric realisation is
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colim F'. In formula, this reads:

colim F' ~ ' 5 (XO%ch)(élFlumn(N’C): F(Xy) —= )%glelcni F(Xo)

Sketch of proof.  Let us rephrase the statement more formally: consider A ¢, the subcategory
of Cat e obtained by pulling along A — Cat. This category is the total space of right fibration
over A which classifies the functor T': A°? — Cat whose values are T;, := Map(A™,C). Because
categories are in particular complete Segal objects in S, note that C is the colimit of the composite
A:Aje — A — Cat, where the map A — Cat is the usual inclusion.

By Lemma[T.1.2} C is therefore the localisation of the unstraightening of . As \ is a composite,
we see that this unstraightening is of the form A o xA A, ;. We can now toy with the combinatorics
of A to see that it suffices to invert cocartesian edges over maps in A o whose component in A is of
the form dp : [n] — [0]. This in turn removes the need to pointify, so that C is also the localisation
of A/c at the above described collection of arrows.

In consequence, there is a functor

a:Aje—C

which is both coinitial and cofinal by virtue of being a localisation. But A has an automorphism
which reverses the order of every subset (this is nothing else than the restriction of (—)°P to this
subcategory of Cat). This leads to a different choice of edges to invert and therefore to a different
value of the localisation, namely it is now given by C°P:

B: A —s CP

By cofinality, the colimit of F : C — D is also the colimit of the composite A?g — C — D, which is
computed by left Kan extension along A‘/)g — A — % which we can do in two steps, first along
A‘;g — A°P which is taking the colimits of what was called ¢,, in the statement of the theorem
and then the geometric realization, i.e. left Kan extending along A — *. This concludes. O

In fact, by inserting in the proof that spaces are nothing more than geometric realizations of
sets (their simplices), we also have a version of the above formula where the space-indexed colimits
have become set-indexed, i.e. coproducts:

Proposition 2.1.7 — Also the Bousfield—Kan formula. Suppose given a functor F' : C — D with
target a cocomplete category, and suppose C is explicitly given by a small simplicial set. Then,
there is an equivalence

colim F' ~

== I F&o)==]] F(xo)

a:Xog—X1€C, z€Co

where the n-simplices of the right hand side is given by the coproduct over o € C, of F' evaluated
at the first vertex of o.

Let us now try to apply this formula to the coend defining THH. Recall that n-chains of the
twisted arrow category of C, i.e. functors X : [n] — TwAr(C) are given by diagrams in C of the
form:

X, X, X
R
Y, Y, Yo

with X; — Y; being the value X (i). In particular, we see clearly that Fun([n], TwAr(C)) ~
Fun([n] * [n]°P,C) i.e. chains of length 2n + 1 obtained by forgetting all of the vertical maps except
for the leftmost one.

In consequence, if M : C°P x C — Sp is biexact, we get the following formula:

XeC
M(X,X) ’ e colim M (Yo, Xo) =3 colim M (Yo, Xo)

where the colimits are indexed by T;, ~ Fun([n], TwAr(C))= with the aforementioned notational
convention.
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The functor e : A — A, sending [n] to the join [n] * [n]°P = [2n + 1], is called the edgewise
subdivision. As explained in section 2.2 of [Barl3], this functor is such that e°P is cofinal. In
particular, the above geometric realization is equivalent to a simpler expression, with colimits
indexed by spaces of length-n chains in C:

Applied now to the coend that computes THH, we get:

Theorem 2.1.8 Let M : Ind(C) — Ind(C) be colimit-preserving, then, there is an equivalence

THH(C, M) ~ ‘ — (X&cileiglr - map(Y, M (X)) == colim map(X,M(X))‘

whose n-simplices is a colimit indexed by the space of length n chains Xg — ... = X,, of the

spectrum
map(X,,, M (Xo))

Moreover, the formula can be further unravelled to show:

THH(C, M) ~ ‘ S chi)/herél: map(X,Y) ® map(Y, M(X)) —= g(oelicrgmap(X,M(X))'

with n-simplicies the colimit indexed by tuples of (Xo, ..., X;,) of

map(Xo, X1) ® ... ® map(X,, M (Xy))

Proof. The first formula we have already proven in the above discussion, so let us solely focus
on deriving the second formula. Let us mention that one proof of this, which is certainly the most
straightforward, is to directly check that the wanted formula, as a functor in M, constitutes a
valid evaluation map Ind(C°? ® C) — Sp hence must coincide with the coend by the unicity of such
datum. This is how this formula is proven in [HSS17), Section 4.5].

Of course, the above miracle is unenlightening; it is possible to tweak the simplicial object a
bit so that it no longer computes the trace and yet the phenomenon at heart of the above proof
will still hold. The more correct way to prove the second formula is to appeal to two facts: Lemma
??, which we will prove later once we have developed enough enriched category theory, and a
spectrally-enriched version of the Bousfield-Kan formula, see Theorem ??. In what follows, we
therefore do not provide a proof but at least, we hope to explain where the subtlety lies, and what
has to be done.

Let us begin by noting that Fun([n],C)~ is the total space of a fibration over C= x ... x C= with
(n+ 1) factors whose fibers are the products of mapping spaces in successive order, i.e.

Map(Xo, X1) X ... x Map(Xp—1, Xp)

The colimit in each simplicial degree of the first formula only depends of the base; using that
colimits over constant spaces are also given by tensoring with the suspension spectrum, we get the
following formula

THH(C, M) ~ ’ S Xc%)/lgél: E20* map(X,Y) ® map(Y, M (X)) —= g:(oehcn:lmap(X,M(X))

where the general term is given a colimit over tuples of X; of
EioQOO map(XOa Xl) ®...0 ETQOO map(Xn—la Xn) ® map(Xnv M(XO))

Recall that for I an exact functor, the exact approximation of ¥5°Q>F is I itself; in partic-
ular there is a natural transformation ¥5°Map — map which witness the target as the exact
approximation of the source.

To conclude, we would have to adapt the idea that underlies Remark and be able to
replace each ¥5°Q* map(X,_1, X)) by its exact approximation map(X,_1,X,). Let us mention
that is nothing short of a miracle, at least from the prism of enriched category theory: indeed,
we will eventually interpret this fact as saying that coend of exact functors are automatically
spectrally-enriched, but a similar fact is not true for general V-enriched categories. O
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The above formula is fun and arguably more natural, because it uses the Bousfield-Kan formula
involving colimits of spaces, which sounds more reasonable to the homotopy theorist. But there is
another, which has for itself the favours of history:

Proposition 2.1.9 Let M : Ind(C) — Ind(C) be colimit-preserving, then, there is an equivalence

THH(C, M) ~ |.. =—=f [] map(X,Y)® map(Y, M(X)) == [] map(X, M (X))

X,YeC XeC
whose n-simplices is a colimit indexed by the space of tuples Xy, ..., X, of the spectrum
map(Xo, X1) ® ... ® map(X,, M (Xo))

Proof. The whole previous discussion also adapts with the Bousfield-Kan formula of Proposition

we do not redo it. O]
AN

The formula of Proposition has sometimes be termed as the multi-object (cyclic) Bar
construction, the cyclic part coming when M ~ map. We will explain in the next section the
appearance of the term cyclic; let us also make a remark about the term multi-object.

Remark 2.1.10 Let us make here a long historical remark. For a discrete ring R, THH(R)
was first defined by Bokstedt in [B685| via a formula as in Proposition m except over C
the category with one object and R as its endomorphism spectrum (so a spectrally-enriched
category, though he did not put it in these words). We will compare this definition with ours
later; let us also mention the fact that Bokstedt was deeply inspired by Waldhausen’s insights
in this construction and, relevant to this lecture because of where it is given, many of these
early developments happened in Bielefeld.

For a ring R € Algg, (Sp), Békstedt formula still works and one can even generalize a little.
Indeed, a R-bimodule M induces a functor M ®r — : Mod(R) — Mod(R), and reciprocally
any such colimit-preserving functor is of this form, since Mod(R) is (non-freely) generated
under colimits by a single object, namely R viewed as a bimodule over itself. In this context,
INS17, [KMN23] have produced cyclic Bar constructions refining the above, but again, they are
not quite the same, as they look as follows:

THH(R, M) := ‘ T2 ROM—M

where the tensor product is absolute, i.e. over S. Again, it turns out that properly explaining
this equivalence of definitions involves ideas that we are not ready to explain, so we delay this
to a later section.

Finally, we also have to mention that in [DM96], there is also a cyclic Bar formula with
many objects for ring functors. It is unclear to the author, due to a lack of background into
that specific era of trace methods mathematics, what actually a ring functor is, but sources tell
him it should be thought as a way of encoding spectrally-enriched categories, so related to the
material we will be developing later.

In any case, they specialize their theory to additive categories for ungodly model categorical
reasons (i.e. their THH is not in general an Q-spectrum), and if R is a ring or in fact, a
connective ring spectrum, compare their THH(Proj(R)) to Bokstedt’s THH(R), where Proj(R)
is the smallest subcategory of Perf(R) containing R and closed under retracts and extensions.
In particular, since R is connective, Perf(R) is the stable envelope of Proj(R) and so admitting
the above comparison, we will be able to compare Dundas—McCarthy’s and our construction in
a simpler way, but again in later developments.

In view of the above lengthy historical remark (which is also omitting some constructions, such
as [DM94], which is another paper that exists thanks to the welcoming Universitat Bielefeld), we
hope that the ultimate goal of this section is more motivated: provide a universal property for
THH.

However, let us conclude this section by applying the Bousfield-Kan formula to the stable coend
Yoneda lemma we proved in

36



Corollary 2.1.11 Let C be stable and F': C°? — Sp exact, then

F(A) ~ ‘ 5 X—>(;/Oelg?(c)ﬁ F(Y) ®@map(A,X) —= ():(oehcrg F(X) ® map(4, X)

and more generally, the n-simplicies are given by

li F(X, A, X,
(Xoﬂ...ﬁ)cf?i)lgllrun([n}ﬂ): ( ) ®map( O)

with simplicial maps induced by precomposition.

There is also a similar formula with coproducts in place of colimits by replacing Proposition

by Proposition

Remark 2.1.12 Let us also note that the right hand side formula is always exact in A, and actually
computes the initial functor under F' which is exact. This follows from checking already that
the natural transformation

XeC
F(=) — / F(X) ® mapg(—, X)

has the wanted property. But by the coend Yoneda Lemma, this map is an equivalence for exact
presheaves and its target is always exact (because map is) so the local criterion for Bousfield
localisations concludes ([Lur08, Proposition 5.2.7.4]). This has the property that for computing
the above coend, one can replace F' by its exact approximation.

2.2 Two universal characterizations

So far, we have explored a lot about the spectrum THH(C, M) but we have been silent about
the functor. The goal of this section is to remedy this, and to further study THH by giving
two characterizations of the functor: universality with respect to a “weak” set of properties and
uniqueness with respect to a “strong” set of properties.

Let us begin by certainly the easier fact on functoriality:

Lemma 2.2.1 There is a functor THH(C, —) : Fun®™(C°? @ C, Sp) — Sp.

Proof. This functor is the composite
Fun®*(C° ® C, Sp) —— Fun® (TwAr(C), Sp) <™ Sp

where the first map is precomposition along TwAr(C) — C°P x C. O

From the coend formula perspective, the above is saying that a natural transformation M — N
of C-bimodules induces a map between their colimits. But given M a D-bimodule and f : C — D,
we can define a D-bimodule M o (f°P x f). Then, there is a natural map

li M(f(Y), f(X)) — i MY’ X'
x o SeRunie) IO T = ) 800,y MO X
induced by restriction of the diagram via the induced map TwAr(f) : TwAr(C) — TwAr(D) hence
there is also some functoriality between the different THH(C, —).
Our goal is to explain how to bundle these into one single object. For this, we first have to
bundle the source categories together. Note that the association

C — Fun™(C°? ® C, Sp)

is both covariantly functorial via left Kan extension along f°P x f or contravariantly using pre-
composition along f°P x f. Since those two operations are adjoint to one another, we can give the
following definition:
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I Definition 2.2.2 We write Cat'*® for the total space of the bicartesian fibration which classifies
the above functor and its two adjoint functorialities.

Note that Cat'®® is also a full subcategory of a category whose objects are usually called the
category of profunctors on Cat™ (or sometimes distributors, or relators, or even bimmodules)
spanned by profunctors with the same source and target. In fact the whole category of profunctors
is encoded in Cat'®®: as we will see in Proposition profunctors with different source
and target show up as “adjoints arrows” on Cat'®®. This is a different take on profunctors,
which does not involve any 2-categorical refinement a priori (but ultimately, the aforementioned
Proposition and what we will call laced semi-orthogonal decomposition are 2-categorical) or in any
case, intertwined the 2-categorical datum at the 1-categorical level, in such a way that makes it
particularly comfortable to deal with topological Hochschild homology and as we will later see,
cyclic K-theory.

Remark 2.2.3 Unstraightening is sometimes denoted by an integral sign, which we have chosen
to avoid for it is our notation for (co)ends, but let us use it for this very Remark:

CeCat™*
Cat'**® .= / Fun™(C°? ® C, Sp)

There is a great deal of similarity, half for arbitrary notational reasons but the other half for a
good reason, between this formula and the coend formula for THH:

XeC
THH(C, M) := M(X,X)

We will see throughout this section that Cat'®*® is a very natural home for THH, and we would
like to think about it as a categorified version of the coend formula for THH — or maybe more
rightfully so a laz-categorified version (i.e. we will still need to impose a condition of inverting
some maps to recover something closer to THH).

A surprising phenomenon, which is at the heart of [HNRS26al, [HNRS26b], is that the lax
categorifications of the different formulae for THH, as in Proposition [2.1.9] or its cyclic and
epicyclic refinements, see later sections, lead to different lax-categorifications of THH, which
are such that when enforcing the correct strictness condition, they either become equivalent or
one is extra-structure of the other. If time permits, this is what these lecture notes would want
to explain.

There is a second description which offers a different, but still particularly tractable description
of Cat'™“:

Lemma 2.2.4 The category Cat'®® fits in the following pullback square:

Catlace AroplaX(PrI[éx)

|0

Ex (Ind,Ind) L L
A hd) piL ik

Cat

Proof. The pullback classifies the correct functor: indeed, it is a classical fact that Ar°P'**(Prk ) —

Pr{:;x X PrI]::X is the unstraightening of Fun®(—, —) made a functor by precomposing in one variable
and postcomposing in the other. In particular, this is cocartesian in one variable and cartesian in
the other, but since both operations have adjoints, turns out to be globally bicartesian. O

Explicitly, Cat'**® is a category of pairs (C, M), called laced categories, with M : C°° @ C — Sp.
Maps (C,M) — (D, N) in this category, laced functors, are pairs f : C — D and a natural
transformation

0 M —s (f x )N
or dually, from the left Kan extension of M. Let us also note that using Fun®(C°? @ C, Sp) ~
End"(IndC), we can also write the above in term of pre- and postcomposition along Ind(f) and
its right adjoint.
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Lemma 2.2.5 The category Cat'®*® is presentable, in fact compactly-generated. It has a symmet-

ric monoidal structure with unit (Spfi*,id) which makes Cat'**® — Cat™ a symmetric monoidal
functor; the symmetric monoidal structure is closed with internal mapping object:

Fun((C, M), (D, N)) := (Fun®™(C, D), Nat}!)

where NatX! (f,g) := Nat(M, N o (f°P x g)).

Proof. All of those facts are proven in [HNS24], from which we draw inspiration.

We first claim that Cat'®°® is compactly-generated by two objects (Spfi®,0) and (Sp'®,id). Now
of course the former is a retract of the latter so in fact, (Spfi",id) is a single compact generator.
Recall also that (Spfi®,0) corepresents the functor (C, M) — C~ whereas (Sp™™,id) corepresents
(C, M) — Lace(C, M)=. We will investigate later this functor in more details; the only thing we
need is that Lace(C, M)~ — C= is a left fibration classifying X — QM (X, X). To see this, it
suffices to see that there is a pullback square

Lace(C, M)~ ——— Ar(Ind(C))=

| |

¢~ — UM L 1d(e)> x md(C)>

which follows from the pullback square of Lemma [2.:2.4] The corresponding fact for the right hand
vertical map implies the claim about the left hand side vertical map.
Given f: (C,M) — (D, N), there is a commutative square

Lace(C, M)~ —— Lace(D, N)=

| |

Cl" D’:

whose vertical legs are left fibrations classifying respectively X — QM (X, X) and X — Q*N(X, X).
Hence, if both horizontal arrows are equivalences, then so is at every point the natural map
Q°M(X,X) = Q°N(f(X), f(X)). In consequence, the natural transformation

n:M(=, =) — N(f(=),f(-))

is itself an equivalence. But note that f : C — D is already an equivalence by Corollary [I:3:10] so
that the above laced functor (f,n) is itself an equivalence.

Again, we skip the details for the symmetric monoidal structure: it follows from the cartesian
square of Lemma[2.2.4] Let us therefore only describe what it does on objects: (C,M)® (D, N) :=
(C®D, MK N) where MX N is the unique C® D bimodule induced by the bi-exact functor M x N.

Finally, the formula for the internal mapping object can also directly be checked from the
cartesian square, though this is cumbersome to spell out. O

Remark 2.2.6 Let us also mention that Cat'®* can also be identified with TCat™, the tangent
bundle of Cat™ . This means that the forgetful functor Cat'**® — Cat™ is a cartesian fibration
which classifies the functor C +— Sp(Cat]/aé‘) — after the fact, the identification Sp(Cat]/aé‘) ~

Fun®*(C°? ® C, Sp) implies this is actually a cocartesian fibration as well, since the restriction
functors have left adjoints given by left Kan extension.

We could check that THH extends to a functor on Cat'®® by hand, but that would not be
as pretty and as formal as what we will do instead. We want to understand how much of the
properties of a trace THH has retained; for this, let us introduce an intermediate object:

I Definition 2.2.7 We write Cat"™*°® for the unstraightening of the functor C — Fun(C° x C,S),
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I with either covariant functoriality given by left Kan extension or contravariant functoriality
given by pullbacks.

Warning 2.2.8 By a theorem of Harpaz—Nuiten—Prasma, see [HNP18, Theorem 1.0.3], Fun(C°P x
C,Sp) is not the tangent bundle of Cat at C so even if we had tried to compensate the above
lack of stability, the analogue of Remark fails.

The actual tangent bundle is Fun(TwAr(C), Sp) — there is a fun little coincidence, since
TwAr(C) is the category we are taking colimits over when writing the coends that define THH.
It is unclear to the author whether there is more to it than this coincidence. See also Remark
77 for related remark on the general, V-enriched case.

The inclusion Fun® (C°P ® C, Sp) — Fun(C° x C,S) induces a functor Cat'*® — Cat"™ace,

I Proposition 2.2.9 The category Cat'**® is tensored and cotensored over Cat"™!ace,

Proof. The category Cat""*“ fits in a pullback square similar to that of Lemma [2.2.4

Catunlacc AroplaX(PrL)

J |0

Cat % pPr¥ x pr%

In particular, the above natural transformation is also induced by a natural transformation between
the cospans, induced by forgetting the stability. But note that all those functors have a left adjoint,
given by some flavour of stabilization: either the Spanier-Whitehead stabilization of freely adding
finite colimits to a category for small categories or simply tensoring with Sp for presentable ones.
This induces a left adjoint to the forgetful functor Cat'*® — Cat"™*°°, given in formula by:

(C, 1) — St(C,I) == (SW(PJ™(C)), STT)

where we borrowed the notation of Theorem and X/)f’if denotes the unique extension of
XXI: C°P x C — Sp to a St(C)-bimodule.

But combining Lemma [1.4.7] and Lemma [1.4.1] we see that the left adjoints in the map of
cospans are symmetric monoidal functors. Ergo, since the symmetric monoidal structures on
Cat"™2°® and Cat'**® are built via the pullback, it follows that Cat'®“® is tensored and cotensored
over Cat"™*® and these operations factor through the left adjoint St. O

In particular, we will be interested in the following example: (C, M){(":*) that is the cotensor
of a laced category (C, M) by the unstable laced category ([n],*), where [n] := {0 < ... < n} and
the bimodule is constant equal to the point. This cotensor is a priori the laced category:

(€, M) ) = Fun(St([n], *), (C, M) = (Fun([n], C), Nat}y)

where the associated bimodule Nat}, is given by Naty (f, g) = nat(cstgs, M). Using the description
of natural transformations as an end, as in Lemma [[.4.20] we can compute it more explicitly as
the following, coming from evaluating at the initial object of TwAr([n]):

M (X = = X, Yy = .= Y) = M(X,,,Y)

Because of the functoriality of cotensors, for a fixed laced category (C, M), there is a simplicial
laced category (C, M){*}:*) and this construction is also functorial in (C, M), i.e. defines a functor

Cat'a® x A% —, Cat'ac®

Definition 2.2.10 A functor Cat'®® — & is trace-like if it inverts all the maps in the simplicial
object (C, M)[*}*) for every (C, M).

Because of the simplicial relations, it suffices to check that such a functor inverts one exterior
face of every degree, and among such faces, it suffices to check that say every dg : (C, M)+ —
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(C, M) is inverted by using that this implies that (C,M)Px[*) — (¢ M) also will be
inverted.

There are many more maps inverted by any trace-like functors than just the ones in the simpli-
cial object. The following is a classical idea in simplicial homotopy theory which provides a bigger
class of inverted maps, though it is unclear to the author whether this is all of them.

Lemma 2.2.11 Suppose given a diagram of the following form in Cat'®:

(D, N)

(D, N)

Then, any trace-like functor inverts f if and only if it inverts g.

Proof. This is straightforward: if ® : Cat'®®® — £ is trace-like and inverts say f, then it must
invert the homotopy H because it inverts dy,d; by assumption. Considering the second triangle
immediately concludes. O

In particular, if a pair of functor f, g is such that there exists two diagrams as above between
f o g and id and respectively g o f and id in the second diagram, then both f, g are inverted by
any trace-like functor. The name trace-like might be a bit coming out of the blue given the above
definition, but the following might be helpful in that regard.

Proposition 2.2.12 Let L : C, L "D : R be an adjunction between stable categories. Let
M : D°? ® C — Sp be an exact functor. Then, there is a pair of laced functors

Ly : (€, Mo (L° xid)) —— (D, Mo (id xR)) : Ry

lifting the adjunction L 4 R which are sent to maps inverse to one another by every trace-like
functor.

Proof. To define the laced functors, it suffices to produce a natural transformation for each,
respectively

Mo (L°P xid) —— Mo (id XxR) o (L°P x L)
Mo (idxR) —— M o (L°P x id) o (R°? x R)

and we take the maps induced by the unit and the counit. But note there is the following commu-
tative diagram:

(C, M o (L x id))

id
%)

(C, M o (L°P x id)) —L (C, M o (L°P x id))([1}»)

x
RyroLy

(C, M o (L x id))

where H simply witnessed that the unit of the adjunction comes with a laced refinement by the
above natural transformation. A dual diagram reversing the order of Lj; and Rj; and using the
counit finishes the proof. O

I Remark 2.2.13 In the convention of bimodules as Ind-functors, the above pair of laced functors
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reads
(C,Ind(R) o M) —— (D, M o Ind(R))

where M is viewed as a functor Ind(C) — Ind(D). Hence, trace-like functors have the cyclic
invariance characteristic of a trace when one of the bimodule is a functor Ind C — Ind D which
preserves compact objects and whose adjoint also preserves compact objects.

If C, D are categories of modules over a ring, this corresponds to those bimodules M which
are compact and whose dual is also compact. More precisely, this means that given a compact
(S, R)-module N, in particular N compact as S module, and writing L := N ®g — : Perf(R) —
Perf(S), and also given M any (R, S)-bimodule then there is an equivalence

F(Perf(R), N ®g M) ~ F(Perf(S), M @ N)
coming from explicit maps in Cat'*°.

Given our definition, it is not too hard to produce the universal trace-like functor out of a given
F. In particular, the following strategy of proof is quite robust to other situations:

Proposition 2.2.14 Let F : Cat'®® — £ be a functor to category with geometric realizations,
then the functor cyc(F') given by

cye(F)(C, M) := |F((C, M)([*}+))

is trace-like and receives a natural transformation F' — cyc(F') which is initial among natural
transformations with source F' and target a trace-like functor.

Proof. The construction cyc is an augmented endofunctor, the augmentation n : id = cyc
being induced from inclusion of O-simplices. Therefore it suffices to check the criterion of 5.2.7.4(3)
of [Lur08].

We first claim the essential image of cyc is precisely trace-like functors. Indeed, if F' is trace-like,
cyc(F) is constant hence F' — cyc(F) is an equivalence. Moreover, remark that

cye(F)(C, M) )y .= | F((c, M)TeIx12))y

is always equivalent to cyc(F)(C, M) via either projections. This is a general fact about functors
defined on the (opposite of the) product-closure of A: there is always an equivalence | X ([o] x [1])] ~
| X ([#])| — this readily follows from the fact that (id,cstp) : A°P — AP x A is cofinal for every
[k] € A. In particular, this showcases the usefulness of having generally defined cotensors.
Finally, to conclude, remark that cyc(cyc(F)) is the colimit of a bisimplicial object which is
constant in either simplicial direction, hence the two maps we have to check are invertible for the
criterion are evidently equivalences as inclusion of 0-simplicies in either simplicial direction. O

We claim one can identify THH as cyc applied to a specific functor. There is no doubt to which
functor this is supposed to be, as F' is always the O-simplices of this simplicial object — however,
we have produced multiple geometric realizations formulae for THH, so this is where we have to
be smart. We will pick one we have skipped explaining using the coend Yoneda lemma.

If (C, M) is a laced-category, let us define the naive trace of (C, M) as follows:

“tr(C, M) := colim M (X, X)
Xec=

The notation  tr is trying to imitate the trace wearing a hat too big for itself (I did not want to
spend the time to make it slanted, but it probably should). Note that this is indeed a functor not
just in M but in (C, M) € Cat'**°, namely the composite

Cat"** —— / Fun™(C™ x €=, Sp) <2y / Sp — Sp

CeCatFx CeCatEx

where the integral sign is a notation for the unstraightening. The second-to-last term is equivalently
Cat™ x Sp so that the last map is the projection to Sp. The other two maps are maps of
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cocartesian fibrations, the former relies on the compatibility of the functoriality with restriction
along C= x C= — C°P x C. The latter is essentially due to the (lax) compatibility with colimits (in
particular, it is not a map that respects cocartesian lifts).

Another approach to define this functor is to first build the functor sending (C, M) to

colim QM (X, X)
Xec=
but note that this is another name for Lace(C, M )=, since this is the total space of the fibration

classifying this functor. In particular, this is clearly a functor in Cat'*. Then, ~tr is the target
of the initial natural transformation

¥ Lace™ — F

whose target is a functor F': Cat'*® such that each F(C, —) is exact. Both of these approach are
somewhat annoying to make precise. The reason is that the correct way to do this is the following:

Lemma 2.2.15 The functor _tr coincides with the composite

Catlace _n , lax colim FunEx(COp & C, Sp) — Sp
CeCatEx

where the lax colimit is taken in Cat™ (in particular, is a stable category) and the second map
is the functor corepresented by the image of (Spfi",id) via the first functor. The first functor is
the canonical comparison map from the oplax colimit computed in Cat and in Cat™.

Moreover, (Sp",id) is compact in the middle term hence, Ttr actually commutes with
filtered colimits.

Proof. Essentially, the second recipe we gave to define Ttris precisely how mapping spectra in
the oplax colimit in Cat™ are built. To make this proof more careful, we would have to invest
a bit more time into oplax colimits in Cat™, which we do not want to do for now; a reference is
for instance [LNS25]. Let us also point towards Lemma ?? which proves a more general fact that
(almost) recovers the one we want when specializing to V = Sp.

For the second part, recall that Lace™ : Cat'*® — S preserves filtered colimits, as was shown
during the process of proving Lemma [2.2.5] since this fact is equivalent to the compactness of
(Spfin id). Our claim is therefore essentially that the fiberwise stabilization process preserves
filtered-colimit functors. This is clear from the formula: colim,, Q" F(C, X™). O

Proposition 2.2.16 There is an equivalence cyc(~ tr)(C, M) ~ THH(C, M) for every laced cate-
gory (C, M). In particular, THH is a well-defined functor on Cat'*®, which is trace-like and
universally so out of  tr.

Proof. We first claim that the Bousfield-Kan formula applied to THH yields an equivalence:

THH(C, M) ~ ’ — colim M (¥, Xo) = colim M (Yy, Xo)

where T, := Fun([n],C)= with the same notational convention as before Corollary [2.1.11] Again,
we remark that the above formula is the edgewise subdivision of another, hence there is also an
equivalence

THH(C, M) ~ ‘ — (X&(;lelglr(c): M(Y, X) == colim M (X, X)’

Hence, to conclude, it suffices to prove that

“tr((c, M)y ~ li M(X,, X,
r((C, M) ) X0—>...—>)C((T),,€HI~£im([n],C)2 (X, Xo)

which is straightforward from the example following Proposition [2.2.9] O

Let us also record the following;:
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I Corollary 2.2.17 The functor THH : Cat'®*® — Sp preserves filtered colimits.

Proof. We know that tr commutes with filtered colimits by Lemma Let us also note
that each (C, M) — (C, M)("*) does by virtue of ([n],*) being compact in Cat"™*°: indeed this
functor is adjoint to (C, M) — St([n], *) ® (C, M) where St : Cat"**° — Cat'**® is the functor we
built in Proposition [2:2.9] The universal property shows that this functor preserves compacts as
soon as ([n], *) is compact.

This latter claim is straightforward to check by hand: [n] is compact in Cat (it is even finite!)
and so is the constant functor * equal to the terminal object since * is compact in spaces, hence
the explicit description of filtered colimits in Cat"™*° (i.e. take the colimit underlying and then
push the bimodule via left Kan extension) concludes.

It follows that the whole simplicial object (C, M){*}:*) commutes with filtered colimits and
therefore its geometric realization, which is THH by the above Proposition. O

Remark 2.2.18 The upshot of the Proposition [2.2.16]is that the trace of a functor is not just the
sum of all of the diagonal values, but one has to take into account the maps in the sum; in the
same way that a natural transformation ¥ = G is not simply giving maps F(X) — G(X).
However, there is another to recover the real trace from the sum of diagonal values, it is to
universally enforce a weak version of the cyclic invariance of the trace as in Remark 2.2.13]

Let us make a few remarks on what kind of trace invariance this implies for THH (and more
generally trace-like invariant). By Proposition [2.2.12] and Remark [2.2.13] we see that for every
adjunction L : C 4D : R and M : Ind(C) — Ind(D), we have a pair of laced functors

(C,Ind(R)o M) —— (D, M o Ind(R))

which are sent to inverses to one another by THH. Now, one can take M itself to be Ind(L) and
under the further hypothesis that L has another left adjoint, apply this again but in the other
direction with the bimodule being Ind(R) this time.

This gives two equivalences and therefore a Z-action on say (C,Ind(R) o Ind(L)) but since the
two maps have a common inverse, this action must be trivial. It turns out that there is an inter-
esting Z-action on THH(C,Ind(R) o Ind(L)), in fact, it is a Ca-action, where C; is the cyclic group
with two elements, but it is invisible to trace-like functors. Perhaps we will have time to explain
this in a later section.

This leaving gaping a very sensible question: what happens if we try to enforce the real cyclic
invariance property? Let us spoil already the surprise, THH is already cyclic invariant (hence
the cyclic-invariant approximation of the naive trace). Now, proving this statement in its most
structural version will occupy a lot of our later sections.

Let us first provide a version that is not quite fully coherent, but at least implement the idea.
This can be done in many ways, classically through the cyclic Bar construction (but no reference
in this language exist, as far as we are aware), and through the formalism of traces (see [KNP24]).
We will present our own version, using coend magic, but all three suffer ultimately from the same
defect: the equivalence is not induced by a map in Cat'*®. Our version is presumably the one for
which this defect appears at the latest part.

Lemma 2.2.19 Let M : C°? — Sp and N : D — Sp be exact functors, C, D both stable and let
f:C — D be a functor . Then, f induces an equivalence in Sp:

C D
a(f):/ M@f*uv)é/ A(M) © N

where the tensor is pointwise the one of Sp and f; denotes left Kan extension along f, f* is
precomposition.
In consequence, the laced functor (C, M @ f*(N)) — (D, fi(M) ® N) is inverted by THH.

Proof. Let us first explain what is the induced map: there is natural transformation id = f f*

44



which induces a natural transformation of functors, and finally a map of coend

/CM®f*N—>/Cﬁf*(M)®f*N

Moreover, there is also a map

/Cfsf*(M)®f*N—>/Df!(M)®N

induced by restricting the colimit along the induced TwAr(f). The composite is the wanted map.

Fix Z € Sp, we will show that the wanted map is an equivalence by showing that a(f)* is an

equivalence:
D c
Map(/ f!(M)®N,Z)—>Map(/ M® f*N,Z)

Pulling the limits out, We are equivalently trying to show that:

/DMap(fy(M)@)N,Z) —>/CMap(M®f*N,Z)

is an equivalence. Using that Sp is closed, this map identifies with the following
| Map((00), map(. 2)) — [ Map(0, 1" map(¥, 2)
D c

where map(N, Z) is notation for the functor D°? — Sp sending X € D to map(N(X), Z) (so that
the commutation with f* on the right hand side is legitimate).

By Lemma [I.4.20] we have finally reduced this map to:
Na’t(f!(M)7 map(Na Z)) — Nat(Ma f* map(Na Z))

which is precisely the map that witness that fi and f* are adjoint to one another by construction,
so it is an equivalence as wanted. O

In different terms, what the above Lemma shows is that the laced functor

which is induced by f : C — D and the natural transformation M ® f*(N) — f*fi(M) ® f*(N)
itself induced by the counit of the adjunction between f! and f*, is inverted by THH. But note
that the category Fun®™(C°P @ D, Sp) is (compactly)-generated by the split bimodules, i.e. every
exact functor C°? ® D — Sp is a filtered colimit of objects coming from the Yoneda embedding of
C ® D°P which are in particularly split since they of the form map.(—, X) ® mapp (Y, —) for X € C
and Y € D.

Now note that the above map (C, M ® f*(N)) — (D, fi(M) ® N) not is still defined for non-
split bimodules but also is compatible with filtered colimits. In particular, since THH preserves
filtered-colimits, see Lemma [2.:2.17, we get:

Corollary 2.2.20 Suppose f : C — D is an exact functor, then for any colimit-preserving M :
Ind(D) — Ind(C), the laced functor

(C, M oInd(f)) — (D,Ind(f) o M)
is inverted by THH.

In the case where f has a right adjoint, we are also in the situation of Proposition [2.2.12

Proposition [2.2.16| implies both maps possibly appearing in in Corollary [2.2.20] (where f is either
the left or right adjoint) are sent to inverse to one another by THH.
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Remark 2.2.21 Suppose in the situation of the Corollary that M = Ind(g) for some g : D — C.
Then, we have found two equivalences and therefore a Z-action on THH(C, Ind(f) o Ind(g))
and this time, there is no common inverse in sight to come and be meddlesome. But alas, it
so happens that the two equivalences are still inverses to one another; this can be gruesomely
deduced from the above Lemma but is also very conceptually clear in a generalization we will
present later.

Note however that not everything is lost: if f = g, then the fact that the composite

THH(C, Ind(f) o Ind(g)) % THH(C, Ind(g) o Ind(f)) —% THH(C, Ind(f) o Ind(g))

is actually witnessing a Cy-action on THH(C,Ind(f)°?) ! This is nothing specific about n = 2
and being brave, one could possibly undertake to check by this principle that there is an action
of the cyclic group with n elements C,, on THH(C, Ind(f)°").

We can do better than the above: the category Fun®(Ind(C),Ind(D)) is compactly-generated
by the image of Fun®(C,D) under Ind (this is in fact verbatim the previous claim up to the
usual bimodules to continuous Ind-functor equivalence) so we can also replace Ind(f) by a generic
bimodule:

Proposition 2.2.22 The functor THH : Cat'®® — Sp is trace-invariant, i.e. comes with a
canonical equivalence

THH(C, M ®p N) ~ THH(D, N ®¢ M)

for C, D stable and M : C°? ® D — Sp and N : D°®? ® C — Sp. Moreover, this equivalence comes
from a map in Cat'®*® when the bimodules are split.

Warning 2.2.23 We have lost something very important in this extension however: there is no
longer a map in Cat'®® that is getting inverted, since maps in Cat'®® have to come from a
map C — D. This makes the definition of trace invariants feel a bit icky for the homotopy
theorist, unless one has an extra assumption of preserving filtered colimits, in which case one
can simply ask the map of Corollary to be inverted

Unfortunately, we will also be interested in invariants which need not commute with filtered
colimits — and even if one could also cheat in this case because they factor through some
refinement of THH, this is getting too ugly for our pure souls. In a later section, we will
find a way to get this equivalence induced from an actual map, and doing this properly will
additionally shed some light onto what is going on with the action of Remark

There is even more one can say. Recall that for matrices over a commutative ring R, the trace
is the unique, up to a multiplicative constant, function M, (R) — R which is both invariant under
cyclic permutations and linear. In his thesis [Ram24], Ramzi proved this characterization is robust
enough to lift to higher categories:

Theorem 2.2.24 — Ramzi. Let € be presentable stable and Tr™*(Cat'®® £) denote the full
category of functors F : Cat'®® — & such that

(i) F preserves filtered colimits

(ii) For every C € Cat™ the restriction F(C,—) preserves filtered colimits

(iii) F inverts the map of Corollary [2.2.20

Then, evaluation at (Spf®,id) induces an equivalence
eV (gpfin id) : Tr"“ (Cat'**, &) = &

whose inverse is given by X € £ — X ® THH(—), where ® denotes the tensoring of the
presentable stable £ by Sp.

Proof. Recall that the fibre of Cat'®® over a general C, namely Fun®(Ind(C), Ind(C)) is generated
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under filtered colimits by those functors Ind C — Ind C which factor as

Imd(C) ™2 gy YO~ L 14(c)

for X,Y € C, where the Yoneda embedding has been suppressed from the notation. This is a
consequence of the identification Ind(C°P ® C) ~ Fun®(Ind(C), Ind(C)) which we have already used
under multiple different names.

But note that for such bimodules, by (iii), F' gives an equivalence

F(C,Y @ mapg(—, X)) ~ F(Spﬁ“,mapC(Y, X)®-)

where f is Y ® — (this uses the compactness assumption on Y') and M corresponds to map(—, X)
Since Fun™(Sp, Sp) ~ Sp is generated under colimits by the identity, the linearity hypothesis (ii)
on each F' implies that the colimit-comparison map

map¢ (Y, X) ® F(Sp™,id) — F(Spi®, map. (Y, X) ® —)
is an equivalence. This concludes by the first point. O

Let us first make a remark about whether the above theorem has the minimal assumptions (it
does not):

Remark 2.2.25 Assertion (i) is not quite used in its full potential, since we actually only need
that F(C,—) preserved filtered colimits. But given the expression of the inverse, this is a proof
that this assertion is implied by the other; this can also be seen more directly.

In a similar vein, we did not use that F(C,—) was exact except when C = Spf", but it
follows and can be deduced directly from straightforward manipulations.

A second remark we want to make is that actually the proof has split the statement in two
halves of independent interest:

Remark 2.2.26 In fact, the above proof has asserted something ever-so-slightly more general:
every trace-invariant functor which is filtered-colimit preserving in the bimodule variable is fully-
determined by its restriction F(Sp™®, —) : Sp — Sp, which is also finitary hence determined by
F(Spfi®, —) : Spfi* — Sp.

When F(Spfi®, —) is exact, i.e. of the form, X ® — for X € Sp, we have an inverse to this
process, which is namely to extend the functor to the whole of Cat'®*® as X ® THH. Note
that there is no longer an inverse if we lose the exactness, at least without extra assumption,
as THH(C, M®?) and THH(C, M)®? show. We will come back to those issues later.

One Corollary of Theorem [2.2.24] is as follows:

Corollary 2.2.27 The functor THH : Cat'*® — Sp is the initial such functor which is lax-
monoidal, trace-invariant, colimit-preserving in the bimodule variable. Moreover, this lax-
monoidal structure is actually strong monoidal.

Proof. Note that both THH((C, M)®—) and THH(C, M) @ THH(—) are trace-invariant, colimit-
preserving functors in the bimodule variable. The only non-trivial claim is that THH((C, M) ® —)
is indeed trace-invariant, but this is because our definition of trace-invariance is quite ad-hoc.

Given N, P respectively a (D, £) and (€, D)-bimodule, then M XN and MX P are (CQD,CRE)
and (C®E,C®D)-bimodule. In particular, the trace-invariant of THH applied to those bimodules
gives precisely the wanted claim.

Therefore, Theorem provides a canonical equivalence
THH(C, M) ® THH(D, N) ~ THH((C, M) ® (D,N))

which is natural in both variables, which upgrades to a symmetric monoidal structure on THH. In
fact, we get far more from the above argument: any map

F(C,M)® F(D,N) ~ F((C, M) ® (D, N))
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for F: Cat'®® — Sp a trace-invariant, fiberwise-colimit preserving functor F' : Cat'**® — Sp

corresponds essentially uniquely to a map F(Spfi*,id) @ F(Spfi",id) — F(Spfi®,id) in Sp. More
generally, this upgrades to show that a lax-symmetric monoidal structure corresponds to a E.-
structure on F(Spfi® id). But S is the initial such object, hence the first claim of the Corollary. [

We will eventually show more, i.e. that THH is still initial lax-monoidal for a weaker property
(namely the one hinted at by Proposition [2.2.16)).
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