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Abstract

We study algebraic K-theory and topological Hochschild homology in the setting of bi-
modules over a stable category, a datum we refer to as a laced category. We show that in
this setting both K-theory and THH carry universal properties, the former defined in terms
of additivity and the latter via trace invariance. We then use these universal properties in
order to construct a trace map from laced K-theory to THH, and show that it exhibits THH
as the first Goodwillie derivative of laced K-theory in the bimodule direction, generalizing
the celebrated identification of stable K-theory by Dundas-McCarthy, a result which is the
entryway to trace methods.
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1 Introduction

In [DM94], Dundas-McCarthy solved a conjecture of Goodwillie identifying stable K-theory with
topological Hochschild homology as defined by Bokstedt, up to a shift. This result opened trace
methods, once limited to the rational world, to integral considerations, and is the stepping stone
to the celebrated Dundas-Goodwillie-McCarthy theorem [DGMI13|, stating that for every map



f + A — B of connective ring spectra such that my(f) is surjective with nilpotent kernel, the
associated square of spectra

K(A) —— TC(A)

| |

K(B) —— TC(B)

is cartesian, where TC denotes topological cyclic homology, an invariant constructed from the
cyclotomic structure on THH. This theorem, uncovering the local structure of K-theory, has been
instrumental for a flurry of results, the most recent being the computation of K(Z/p"Z) by Antieau-
Krause-Nikolaus [AKN24] and the recent disproof of the telescope conjecture by Burklund-Hahn-
Levy-Schlank [BHLS23|. It allows one to access the K-theory of complicated rings by building on
foundational computations in K-theory — such as those by Quillen or Suslin [Qui72] [Sus83] for
respectively finite and algebraically closed fields — and computations of the more amenable TC
via the machinery of spectral sequences and the theory of cyclotomic spectra.

In a parallel development, the seminal work of Quillen in the 70’s and Waldhausen in the 80’s
made it evident that algebraic K-theory is best viewed not as an invariant of rings, but rather as
one of categories, or better yet, of higher categories. This approach has enjoyed tremendous growth
in the last decade after Barwick [Barl6], working with Waldhausen oco-categories, and Blumberg-
Gepner-Tabuada [BGT13|, working with stable oco-categories, showed that the higher categorical
setting grants algebraic K-theory a universal property. The latter of the two approaches is the one
we adopt in the present paper, and to simplify terminology we will simply call stable co-categories
stable categories.

This universal property opens a paradigm shift for K-theory: it is no longer an object defined
by involved constructions but a functor universally performing an operation on stable categories.
Coming back to the Dundas-McCarthy theorem, one could hope to understand the identification
of stable K-theory with topological Hochschild homology from the point of view of universal prop-
erties. According to Dundas himself in [Dun22, Section 3.2], although the proof of [DM94] is
following a radically different philosophy, premises of such a program were envisioned by Schwénzl,
Staffeldt and Waldhausen in [SSW96].

The goal of this article is precisely to fulfil this vision: we will prove that stable K-theory
and topological Hochschild homology coincide generally for all stable categories and all choices of
coefficients. In particular, we will recover the result of Dundas-McCarthy by plugging the category
of compact R-module spectra for a connective ring spectrum R. Moreover, our proof will run at
a high-level of abstraction, by providing universal properties for both functors and then showing
that the two properties for which they are universal end up coinciding. Let us now run through
an exposition of our methods.

Stable K-theory K® of a ring spectrum R with coefficients in a R-bimodule M is usually
defined as the exact approximation of the functor M — K(R @& eM), the K-theory of the square-
zero extension of R by M. Dundas and McCarthy proved in [DM94] the identification K (R, M) ~
THH(R, X M). Alternatively, to define stable K-theory, one could consider the exact approximation
of K(End(R, M)), the K-theory of the category End(R, M) of M-parameterized R-endomorphisms,
whose objects are compact R-module spectra N equipped with a R-linear map N — M ®gr N. If
R and M are both connective then there is an equivalence of categories between Perf(R @ M) and
End(R,XM), yielding an identification of this two points of view. This idea already features in
Dundas-McCarthy’s proof, and we note that passing along this equivalence removes the shift from
the identification of stable K-theory with THH.

Let us then recast that story in the categorical world: for a presentable category &, its tangent
bundle TE is defined as the category Exc(Si*, £ ) of excisive functors from finite pointed spaces into
E. There is a bicartesian fibration fgt: TE — £ classifying the functor X +— Sp(€,x), sending an
object X to the stabilization of the overcategory £,x. The collection of functors QC/’} 1 Sp(&/x) —
&, x upgrades to a functor:

sqz: TE —— Ar(€)

which universally characterizes TE. For £ = Algg (Sp), the category of E;-ring spectra, Lurie has
shown that the tangent bundle of £ identifies with the category of pairs (R, M) with R a E;-ring
spectra and M a R-bimodule, such that the above functor is indeed the square-zero extension
functor (R, M) — [R® M — R).



Let us now consider the case & = Cat™, the category of stable categories and exact functors
between them. Recall that a bimodule on a stable category C is a bi-exact functor M : C°? xC — Sp,
or equivalently, an exact functor M: C — Ind(C), where Ind(C) := Fun®(C°P,Sp) is the Ind-
completion of C. Somewhat abusively, we will pass freely between these two points of view without
changing the notation.

Denote by Bimod(C) the category of C-bimodules. Given a bimodule M € Bimod(C), there
is a category Lace(C, M) whose points are M-laced objects in C, i.e pairs (X, f) where X is an
object of C and f: X — M(X) is a morphism in IndC. A central example is as follows: if M is a
R-bimodule for R a ring spectrum, then M ®p — : Perf(R) — Mod(R) is a Perf(R)-bimodule. In
this case, we have an identification:

Lace(Perf(R), M ®g —) ~ End(R, M)

In general, we may view Lace(C, M) as an object of Cat%‘ by remembering the obvious forgetful
functor. Our first result is the following:

Theorem 1.1 Let C be a stable category, then the functor
Lace(C, —): Bimod(C) — Cat]/“:é‘
exhibits Bimod(C) as the stabilization of Cat%‘. In particular, it induces an equivalence
Bimod(C) ~ Sp(Cat%‘)

under which the functor Lace(C, —) identifies with Q%.

Letting C vary, the above theorem assembles into an equivalence
TCat™ ~ / Bimod(C)
CeCatFx

between the tangent bundle of Cat™ and the unstraightening of the functor C — Bimod(C),

which explicitly is the category of pairs (C, M) consisting of a stable category C equipped with a
C-bimodule M. This may be considered as a stable categorical counterpart of Lurie’s identification
of T Algg, (Sp) in terms of rings equipped with a bimodule, see [Lurl7, Theorem 7.3.4.13].

Let us fix some terminology: we call such pairs (C,M) € TCat™ laced categories. Laced
functors (f,): (C, M) — (D, N) are arrows in the tangent bundle TCat™; explicitly, this is the
datum of an exact functor f: C — D and a natural transformation a: M = N o (f°P x f).

The following definition generalizes what is usually known as K-theory of parameterized endo-
morphisms. In particular, for M = id, this is the K-theory of endomorphisms.

Definition 1.2 Let (C, M) be a laced category. We define the laced K-theory of (C, M) to be the
spectrum K'*¢(C, M) := K(Lace(C, M)).

Our first main result is that K enjoys a universal property of a similar flavour to the one of
[BGTT3], whose results imply that 35° ¢ — K is the initial natural transformation whose target is
an additive invariant, where ¢ denotes the largest subgroupoid of a category. The precise meaning
of additivity for functors on the tangent bundle is worked out in Section [3.1

Theorem 1.3 The natural transformation X3° Lace™ = K!e¢ of functors TCat®™ — Sp exhibits
laced K-theory as the initial additive invariant under ¥5° Lace™.

If C is a stable category, stable K-theory K°(C,—) is the exact approximation of Klace C,—)
in the sense of Goodwillie calculus. These approximations behave well in families so that they
assemble into a functor, which we still call stable K-theory

PPV K : TCat™ — Sp

which maps (C, M) to the value at M of the exact approximation of K'*ee(c, -) (the fbw stands for
fiberwise). It follows from the previous theorem that stable K-theory is also given by a universal



property under X3 Lace™, namely the composite

23_0 Lacez Klace Pfl'bw Klace
exhibits its target as the initial additive fiberwise-exact invariant. Here, a functor F : TCat™ — Sp
is said to be fiberwise-exact if the restriction to each fiber F(C,—): Bimod(C) — Sp is exact.

Let us now pass to topological Hochschild homology. There are multiple ways of defining THH
for laced categories, let us pick the simpler one to express, which is akin to writing R @ gorgr M
for ring spectra. If (C, M) is a laced category, we let THH to be the following coend:

Xec
THH(C, M) = M(X, X).

By the Bousfield-Kan formula, this coend can be shown to coincide with the usual cyclic bar
construction with many objects, used notably in [BGT13] Section 10]. In fact, in the laced world,
this cyclic bar construction is an instance of a more general phenomenon, which we now explain.

First, we note that the category TCat® has all small limits and colimits. Using Day con-
volution, it inherits a closed symmetric monoidal structure which makes the bicartesian fibration
fgt: TCat™ — Cat™ into a monoidal functor.

If (C, M) is a laced category, we let (C, M){(1*) denote thenew laced category whose underlying
category is the arrow category C!* and whose bimodule is given as

(Xo = X1,Yy = Y1) = M(X1,Y)) .

As the notation suggests, this construction is an instance of a cotensor. More specifically, TCat™ is
tensored and cotensored over Cat’, the unstraightening of the functor Z — Fun(Z°P xZ,S) and the
category descibed above is the cotensor by ([1],*), where x: [1]° x [1] — & is the terminal functor.
We write do,d; : (C, M) — (€, M) for the laced functors induced by the faces do, d; : [0] — [1].

The laced functors dyp and d; are generating examples of trace equivalences. Indeed, we can
consider the objects of the mapping space

Mapraages ((C M), (D, N)([1:)

as homotopies between their boundary points, we call such maps trace homotopies. A trace equiva-
lence is then a laced functor which has an inverse up to trace homotopy. The projection sg: [1] — [0]
shows that dg, d; are trace equivalences with a common inverse induced by sg, and more generally,
the collection of maps (C, M) — (€, M){I"}*) generates as a saturated class the collection
of trace equivalences, in the sense that inverting such maps is equivalent to inverting all trace
equivalences.

We say that a functor F': TCat™ — & is trace-like if it inverts trace equivalences. If & is
presentable, we let

cyc(F)(C, M) == ’F ((q M)an],*))’

denote the cyclic bar construction of F. The above characterization implies that the natural
transformation F' = cyc(F') induced by the inclusion of the 0-simplices has the following universal

property:

Proposition 1.4 The natural transformation F' = cyc(F') exhibits its target as the initial trace-
like functor under F'.

Let us introduce the following unstable version of THH, denoted uTHH(C, M) by taking the
coend of the functor Q®M: C°® x C — S. It holds that wTHH(C, M) =~ cyc(Lace™), so that
there is a natural transformation Lace™ — uTHH exhibiting unstable THH as the initial trace-

like functor under Lace™. The colimit comparison map for Q° provides a natural transformation
uTHH — Q° THH(C, M) and we are able to show:

Theorem 1.5 The induced natural transformation 7: £3° uTHH = THH(C, M) exhibits its target
as the initial fiberwise-exact invariant under its source.



As a consequence, the composite X3° Lace™ = THH exhibits topological Hochschild homol-
ogy as the initial trace-like fiberwise-exact invariant under its source.

In spirit, this universal property of THH it shares many of the ideas that led to the universal
property of K-theory in [BGT13]; indeed, just like the Se-construction, the cyc construction is
the geometric realization of a simplicial object whose faces are generators of arrows one wants
to control (trace equivalences for THH, split-Verdier projection for K-theory — see [CDH™23bl
Lemma 2.2.8]). On the other hand, it exemplifies the difference between K-theory and THH: the
universal property of the latter is to be found in a world with coefficients whereas the former is
already universal as an absolute invariant, before the introduction of coefficients.

Now that we have characterized stable K-theory and THH as universal objects under the same
functor, namely ¥%° Lace™, the result we are after is a formal consequence of the following theorem:

Theorem 1.6 Let F: TCat®™ — & be a fiberwise-exact functor with target a stable category.
Then, the following are equivalent:

(i) F is additive

(if) F is trace-like

In particular, THH is additive.

The implication (ii) = (i) is obtained by adapting a classical argument, notably found in
[Kall5l Section 5.2], where it is presented as the gist of the proof of the localization theorem for
Hochschild homology proven by [Kel98|]. A close variant of this argument also appears in [HSS17]
Theorem 3.4]. Comparing universal properties, we then obtain our main result:

Corollary 1.7 — Stable K-theory is THH. There is a natural, canonical transformation K'*¢¢ =
THH which exhibits its target as the initial fiberwise-exact invariant under its source. In
particular, THH is stable K-theory.

The present paper is a precursor for our upcoming work [HNS24], where we show that THH
lifts to a functor TCat®™ — PgcSps°", a genuine version of the category of polygonic spectra
introduced in [KMN23], and that this structure restricts in particular to a genuine cyclotomic
structure on THH(C, map). We then deduce that the Goodwillie-Taylor tower of laced K-theory
is given by the limit of the truncation tower of TR(C, M), in particular recovering the main result
of Lindenstrauss-McCarthy in [LM12]. In fact, those statements will fit in a general framework
applicable to any Verdier localising invariant on Cat™ in place of K-theory. We note that one
of the shortcomings of the formalism of the present paper is that it does not explain or allow to
construct the S'-action on THH; this part will also be covered by the forthcoming paper.

This paper and its successor [HNS24] grew out of a manuscript of the second author [Nik1§]
prepared for the 2018 Arbeitsgemeinschaft: Topological Cyclic Homology in Oberwolfach. The
second author would like to apologize for the extended delay in bringing these ideas to publication.

Finally, we note that in his thesis [Ram24], Maxime Ramzi has also proven the above result,
although his proof is radically different and much more in line with the program of [SSW96]. In
particular, it relies on a stronger variant of trace-invariance than the one we dubbed trace-like in
this article. We will compare the different theories in [HNS24] and show that trace-like invariants
on TCat™ correspond to what Ramuzi calls A-trace theories. We also note that Sam Raskin has
observed similar phenomena to the one we describe here [Rasi§].

1.1 Conventions

As we have done throughout most of this introduction, we will use the higher categorical framework
of oo-categories developed by Lurie in [Lur08, [Lurl7l [Lurl8], and we will omit the oo in front of
our categories and the homotopy in front of our (co)limits. We denote S the category of spaces,
and Sp the category of spectra; we let Cat be the category of (small) categories and Cat™ be the
subcategory of stable categories and exact functors between them. If C is stable, Ind C denotes its
Ind-construction, given explicitly by Fun®™(C°P, Sp); we will write map, for the mapping spectra
of M and Map,, for the mapping space. Moreover, K will stand for the connective K-theory functor



from Cat™ to spectra.
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2 Laced categories

Let us begin by briefly recalling some facts about tangent categories and the tangent bundle of
a sufficiently nice category, which were introduced in [Lurl7, Section 7.3]. Let £ be an category
with finite limits and denote by ST the category of finite pointed spaces, that is, the smallest full
subcategory of S, containing S° and stable under finite colimits. There is a cartesian fibration

7 Exc(Si &) —— &

given by the evaluation at * € SQ“, where the left-hand-side category is the category of excisive
functors Si" — £. Since * is terminal in Si® the fibre of m over some X € C is naturally
equivalent to the category Exc, (8?“,5 /x) of reduced excisive functors to £, x, which is a model
for the stabilization of £, x or, equivalently, for the stabilization of the category (£,x)« = Ex//x
of pointed objects in &£, x, which are objects over X equipped with a section. In addition, If £ is
presentable then the fibres of m are again presentable and 7 is also a cocartesian fibration since all
the cartesian transition functors have left adjoints.

Following the philosophy of Goodwillie calculus, stable categories can be considered as the
linear objects of higher category theory, and so, viewing £, x as a type of a neighbourhood of X
in £, its linearization Tx& := Sp(£/x) is called the tangent category of £ at X. Furthering the
analogy with manifolds, the cartesian fibration assembling the various tangent categories is called
the tangent bundle of £, and denoted by

TE := Exc(Si, €).
Evaluation along S° — * provides a functor sqz, the square-zero extension functor, given by:

sqz: TE — g8 = Fun(A'l, £)
(X, M) — [Q)5 M — X]

which characterizes the tangent bundle as the stable envelope, in the sense of [Lurl7, Section 7.3.1],
of the target projection ¢: Ar(€) — £. A classical and important example is the tangent bundle
of the category of E.-ring spectra: by [Lurl?, Theorem 7.3.4.14], it is the cartesian fibration
classified by the functor Algg_(Sp)°® — Cat associating to an E..-ring spectrum R its category of
R-modules. Under this equivalence, sqz is the usual square-zero extension functor (R, M) — R® M
of Eoo-ring spectra. If instead of Algg_ (Sp) we take Algg (Sp) then the same holds with the notion
of an R-module replaced by that of an R-bimodule.

Our goal in this section is to study the tangent bundle of Cat™ the category of stable categories
and exact functors between them. The main idea is that the tangent bundle of Cat®™ admits a
description similar to the one just recalled for E;-rings, obtained by extending the notion of a
bimodule from ring spectra to stable categories.



2.1 Bimodules on a stable category

Recall that for an co-category C, its Ind-completion Ind(C) is given by the smallest full subcategory
of Fun(C°P, S) containing the image of the Yoneda embedding and closed under filtered colimits. If
C admits finite colimits then we may also identify Ind(C) with the co-category of left exact functors
C°? — S ([Lur08, Corollary 5.3.5.4]), and if C is furthermore is stable then this is equivalent, by the
universal property of Sp, to the co-category of exact functors C°® — Sp. In particular, Ind(C) is
again stable and admits small colimits. Furthermore, the Yoneda embedding C — Ind(C) exhibits
Ind(C) as the universal such recipient of an exact functor from C.

For a stable category C, the notion of a C-bimodule can be defined as either one of the following
four equivalent notions:

1. An exact functor C°? ® C — Sp.

2. A biexact functor C°? x C — Sp.

3. An exact functor C — Ind(C).

4. A colimit-preserving functor Ind(C) — Ind(C).

The passage between the first two types of functors is via the defining property of the ten-
sor product in Cat™. The passage between the second and third is by restricting the currying
equivalence Fun(C°P x C,Sp) ~ Fun(C, Fun(C°P, Sp)) to functors satisfying the relevant exactness
conditions, and the passage between the third and the fourth is via the universal property of Ind(C).
In the present paper it will be useful to keep in mind all four forms a C-bimodule can take, and we
will freely shift between them, often without indicating it explicitly in the notation. We will write
Bimod(C) for the (stable) category of C-bimodules.

m Example 2.1 Let R be an E;-ring spectrum, and denote by Perf(R) the category of perfect R-
modules, i.e., compact objects of Modg (to fix ideas, let us consider that modules always mean
left modules). Then any R-bimodule M determines a bimodule on the stable category Perf(R) in
the form of an exact functor

Fyr: Perf(R) — Mod(R) N— M ®pN.
The association M — F); upgrades to an equivalence of categories
Bimodz — Fun®™ (Perf(R), Mod(R)) = Bimod(Perf(R))
with inverse given by F' — F(R), where F(R) is viewed as an R°P-module in R-modules using the
identification Endr(R) = R°P. n

We now come to one of the principal notions of the present paper.

Definition 2.2 A laced category is a pair (C, M) where C is a stable category and M is a C-
bimodule. Given two laced categories (C, M), (D, N), a laced functor (C, M) — (D, N) is a pair
(f,m) where f: C — D is an exact functor and n: M = No(f°P x f) is a natural transformation.

The collection of laced categories and laced functors between them forms a category, which we
denote by Cat'**®. One way to construct it is to note that the association C ~— Bimod(C) is
contravariantly functorial in C via restriction (when bimodules are viewed via one of the first two
definitions above). One may then define Cat'**® to be the total category of the cartesian fibration

7. Cat'®® — Cat®™

classified by C — Bimod(C). In Section below we will prove that Cat'®°® is naturally equivalent
(over Cat™) to the tangent bundle TCat™ of Cat™. Before that, we dedicate the rest of the
present subsection to study the basic properties of Cat'®°.

Proposition 2.3 The category Cat'*® has all small limits and colimits and the canonical functor
7: Cat'®® — Cat™ preserves both.

Proof. Recall that Cat™ admits small limits and colimits, see [CDHT23a, 6.1.1]. Now the
functor 7: Cat'®® — Cat™ is a bicartesian fibration with cartesian transition functors given by



restriction and cocartesian transition functors given by left Kan extension (see [CDH™23a), Lemma
1.4.1]). The fibres of 7, which are the various bimodule categories, admit all small colimits, which
the cocartesian transition functors automatically preserves (being left adjoints), and all small limits,
which the cartesian transition functors automatically preserve (being right adjoints). Combining
[Cur08, Corollary 4.3.1.11 and Proposition 4.3.1.5.(2)] we now conclude that Cat™ admits limits
and colimits and that these are preserved by 7. O

Remark 2.4 The results of [Lur08] used in the proof of Propositionalso indicate the procedure
to compute a colimit in Cat'**®. First, compute the colimit of the underlying diagram of stable
categories, and denote by C € Cat™ the result. Then, left Kan extend every bimodule so that
they become bimodules over C. This yields a diagram in Bimod(C) whose colimit M yields a
laced category (C, M) which is the wanted colimit.

To compute a limit, the process is the same but using restriction of bimodules instead of
left Kan extensions.

m Construction 2.5 Let C be a stable category M € Bimod(C) a bimodule. The underlying space val-
ued functor Q°M : C°P x C — S can be unstraightened, first contravariantly in the first coordinate
and then covariantly in the second, to yield a bifibration

C fX eC

N QCM(X,Y) — C,

see, e.g., [CDH™23al Section 7.1]. We then define Lace(C, M) to be the pullback of this bifibration
along the diagonal, that is, the category sitting in the fibre square

Lace(C, M) —— [}y Q°M(X,Y)

| !

C CxC

We note that the left vertical map is neither a cartesian nor a cocartesian fibration in general.
We may identify objects in Lace(C, M) with pairs (X, «) where X is an object of C and « €
Q*M(X,Y). We refer to these as laced objects in (C, M).

While not immediately visible from this description, the category Lace(C, M) is stable. To
see this, it is useful to pass to an equivalent description of Lace(C, M) which arises from viewing
C-bimodules as exact functors M: C — Ind(C). Unwinding the correspondence between the two
definitions of a C-bimodule, we see that the total object f;(eecc Q°M(X,Y) can be identified with
the pullback along j x M : C x C — Ind(C) x Ind(C) of the arrow bifibration

md(C)A" = md(C)2" — Id(C)>"

We hence conclude that Lace(C, M) also sits in a fibre square of the form

Lace(C, M) —— Ind(C)2'

| | M

¢ —9M 1 1mac) x md(c),

from which we see that Lace(C, M) is stable.

m Example 2.6 Let R be an E;-ring spectrum and M a bimodule, and denote Fj; the associated
Perf(R)-bimodule of Example Then, Lace(Perf(R), Fir) is the category of compact modules
N equipped with a natural transformation N — M ®pr N. It is often called the category of
M-parametrized endomorphisms.

Now suppose that R, M are connective. Then, Lace(Perf(R), Fxys) is generated by a single ob-
ject, namely the pair (R,0: R — XM). To see this, note that the inclusion Lace(Perf(R), Fas)) —
Lace(Mod(R), Fir) takes values in compact objects and hence extends to a fully-faithful colimit
preserving embedding

Ind(Lace(Perf(R), Far)) — Lace(Mod(R), Far).



In addition, if N is a compact R-module equipped with an M-parameterized endomorphism
T: N—YXM®a N then T is nilpotent, that is, the colimit

colim (N = SM @4 N = S*M @4 M @4 N — ...)

vanishes, as can be seen by connectivity considerations. The above functor hence takes values
in the full subcategory of Lace™ (Mod(R), Fy;) C Lace(Mod(R), Fay) spanned by the nilpotent
M-parameterized endomorphisms.

Suppose N is a R-module (not necessarily compact) equipped with a nilpotent M-parameterized
endomorphism 7: N — XM ®4 N in the above sense and such that:

map ((R,0), (N, T)) ~0

then T' must be an equivalence, since this mapping spectra is also fib(7"). This implies that N = 0 by
the nilpotency assumption. This means that (R, 0) is a compact generator of Lace™ (Mod(R), Fys)
and since (R,0) is contained in Lace(Perf(R), Fis) we conclude that the latter is exactly the full
subcategory of compact objects in Lace™ (Mod(R), Fay).

Consequently, Lace(Perf(R), Fxps) is equivalent to Perf(A), where A is the endomorphism ring
spectrum of 0: R — X M. But this endomorphism ring spectrum is none other than the square-zero
extension R ® M, so that we recover a special case of a result in [Bar22]. When M is compact,
this can also be viewed as an instance of Koszul duality between the square-zero extension R ® M
and the cofree coalgebra generated by X M.

In particular, we already have at the level of categories the result of Dundas-McCarthy in
[IDM94], comparing K(M @ R) and K(Lace(Perf(R), Fxar)). "

Our next step is constructing an explicit left adjoint to the functor Lace: Cat'®® — Cat™
of Construction [2.5] For this, let us now introduce an alternative approach to the construction of
Cat'™°. To begin, one first forms the oplax arrow category Ar°"**(Prg ) := Fun®®**(A! Prg )
of the 2-category PrléX whose objects are the stable presentable categories and whose morphisms
are the colimits preserving functors (equivalently, the left adjoint functors). Explicitly, the objects
of Ar°P™(Pr™) are given by arrows F: C — D in Prk,, and the morphisms from F: C — D to
F': C" — D' are given by oplax squares

C ——C

R

D —— D

Formally, the definition of Ar°P®*(Prg,) can be made using general 2-categorical constructions of
functor categories and oplax transformations between them (for example, see [GHL21], [GHL20]).
Alternatively, in this particular case one can also identify Ar°P'**(Prk ) with the full subcategory
of CAT /a1 consisting of the cartesian fibrations M — A' whose fibres are stable and presentable
and whose cartesian monodromy is colimit preserving.

Now the fibre of the projection

AroPlax(PrIéx) —>(S’t) PrléX X PrI]éX

over (C,D) is given by Fun’(C,D); more precisely, (s,t) is exactly the orthofibration classified by
the functor
Fun’(—, —): (Prg,)°? x Prg, — Cat

see [HHLN20, Theorem 7.21]. We note that if we restrict this bifibration in each variable to the
subcategory Pré™ C PrjﬁX containing all objects and just the strongly continuous morphisms in
PrII:]X, i.e., those whose right adjoint is also colimit preserving, then the covariant dependence in the
second entry is also contravariant (by post-composing with the right adjoint), and the contravariant
dependence in the first entry is also covariant (bu pre-composing with the right adjoint).

The base change of (s,t) to Pré?™ x Préo™ is then not just an orthofibration, but also a cartesian
and a cocartesian fibration. Such strongly continuous morphisms arise, for example, from any exact
functor f: C — D between small stable categories upon taking Ind-completion. In particular,
the base change of (s,t) along (Ind,Ind) is a model for the cartesian and cocartesian fibration



P — Cat™ x Cat™ classified by the functor (C, D) — Fun”(Ind(C), Ind(D)), and we get that the
category Cat'*® of laced categories sits in a pullback square of the form

Catlace AI‘OplaX(PI‘EX)

J )

Ex (Ind,Ind) L L
Cat PI‘EX X PI"EX.

This yields a construction of Cat'® as a fibre product, rather than via unstraightening. We point

out the resemblance between the squares and , or rather, can be considered as a once
decategorified version of .

We now exploit the above description of Cat'®® to construct a left adjoint to Lace. For this
consider the natural transformation of diagrams

PrlﬁX AroPlaX(Prlﬁx)
l{id = k(s,t) (3)
Cat™ —— Prg, Cat™ —— Pry, x Prg,

which implements the diagonal map everywhere, that is, on the top right corner it is given by
restriction along A' — A® on the bottom right corner by restriction along A° [JA®? — A and
on the bottom left corner it is just the identity. We then write

L: Cat™ ~ Cat™ XprL Prg, —— Cat™ X (Prl xPrL ) AroPax(prl ) ~ Catloce

for the induced functor on fibre products. Unwinding the definitions, L is given by the formula
C — (C,id) (or, if we consider bimodules as biexact functors, by the formula C — (C, map;)).

Proposition 2.7 The functor L defined above is left adjoint to the functor Lace of Construc-
tion

Proof. FEach component of the natural transformation admits a right adjoint in the form of
the corresponding oplax limit (indexed over Al,; A° T A% or A%); indeed, this is exactly the defining
property of oplax limits, where we note that for A? and A° [ A® there is no difference between
oplax limits and limits (or between oplax natural transformations and natural transformations).
To avoid confusion, let us note that these right adjoints do not assemble to a natural transformation
in general, only to a laz transformation

Prl}gX Aroplax (Pr]ﬁx)

Cat™ —— Prg, Cat™ —— Prg, x Prg,,

which, in turn, yields an induced right adjoint on the level of lax fibre products

Ex _ lax L Y4 Ex _lax oplax L
Cat XPrk Prg, +—— Cat XPrk il Ar (Priy)-

Here, the left hand side can be described as the category of diagrams
&
|
c—2-D

of stable categories and exact functors such that in addition C is small, £ and D are presentable,
and f is colimit preserving. Let Z C Cat®™ xlax PrﬁX be the full subcategory spanned by those

L
Prg.
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diagrams as above whose limit (that is, the fibre product of f and g) is small. Then the composed
functor

\Il/
Ex _ lax L 34 Ex _lax oplax L Ex oplax L
Cat X Prk Prg, +—— Cat XPrk yprl Ar (Prg,) +—— Cat XpiL xpik AT (Prgy)

takes values in Z, since presentable categories are locally small. At the same time, the functor

Ex _ Ex L Ex  lax L
Cat™ = Cat XpyL Prg, —— Cat X prL Pri,

also takes values in Z, and the inclusion Cat™ < Z admits a right adjoint ®: Z — Cat™ given
by realizing the fibre product. We hence conclude that the induced functor

L
Cat™ = Cat™ xp. Prh, —2— Cat™ xp, pu ArP(Pri,) = Cat'™

admits a right adjoint by composing ¥’ and ®. Unwinding the definitions, for a laced category
(C,F: Ind(C) — Ind(C)), the stable category ®(¥’(C, F')) naturally sits in a diagram

O(V(C, F)) —— Lm®*(F) — 5 Ind(C)~'

| | I

¢ —Y7 | md(C) x nd(C) “5 md(0)2"” x md(c)A"

in which both squares are pullback, and so we obtain an identification ®(¥(C, F')) = Lace(C, F'). O

2.2 Laced categories as the tangent bundle of Cat™

Our goal in the present subsection is to prove that Cat'®*® is a model for the tangent bundle of

Cat™. Recall the functor L: Cat™ — Cat'**® of Proposition By its construction, it fits into
a commutative square

CatEX L Catlace

H I

Cat™ —— Cat®,

which we may view as a natural transformation between the vertical arrows in CAT. Since the
individual components of this transformation are left adjoints, [Hau21, Theorem 4.6] tells us that
this transformation is itself a left adjoint when considered as a lax natural transformation, that
is, as a morphism Ar'®*(CAT) = Fun'(A!, CAT). In particular, its right adjoint will be a a lax
natural transformation of the form

Cat™ &2 Caglace
| = I
Cat™ —— Cat"™.
Explicitly, the 2-cell in the above square is given by the canonical projection Lace(C, M) — C

sending a laced object (X, «) to its underlying object X. Passing to lax limits on both vertical
arrows we obtain an induced adjunction

(Cat™)A" — 17 Cat™* x (Cat™)2’ (4)

(CatEx)A{O}

whose left adjoint sends an arrow f: C — D to the tuple ((C,id), f) and the right adjoint sends a
tuple ((C, M), f: C — D) to the composed arrow Lace(C, M) — C — D. Let us now point out that

11



the projection 7: Cat'®® — Cat™ is not only a cartesian fibration, but also a cocartesian fibra-
tion, where for an exact functor f: C — D the cocartesian monodromy Bimod(C) — Bimod(D),
which is left adjoint to the cartesian monodromy Bimod (D) — Bimod(C), is given here by left Kan
extension along f°P x f: C°? x C — D°P x D. By [AF20, Lemma 2.27] we consequently have an
adjunction

Catlace X(CatEx)A{U} (CatEX)Al T} Catlace (5)

where the right adjoint is given by (C,M) — ((C,M),id¢) and the left adjoint sends a pair
((C,M), f: C — D) to the image (f°P x f)iM of M € Bimod(C) under the cocartesian monodromy
along f. Composing and we hence obtain an adjunction

L: (Cat®™)2" 1T Cat"®* : Lace

where the left adjoint L sends an arrow f: C — D to the image of L(C) = (C,id) under the

——~—

cocartesian monodromy (f°P x f);: Bimod(C) — Bimod(D), while the right adjoint Lace sends a
laced category (C, M) to the exact functor Lace(C, M) — C given by (X, a) — X.

Proposition 2.8 The adjunction L - Lace fits into a commutative diagram

™

Al — T ace
(Cat™)2 1 Cat'

Cat®*

that is, both adjoints commute with the projection to Cat®*. In addition, this is an adjunction
relative to Cat™ in the sense of [Lurl7, Definition 7.3.2.2], the right adjoint Lace preserves
cartesian edges and the left adjoint L preserves cocartesian edges.

Proof. We first note that once it is established that L 4 Lace is a relative adjunction, the
preservation of cocartesian edges by Lis equivalent to the preservation of cartesian edges by Lace.

Indeed, write M — Al for the cartesian and cocartesian fibration classifying this adjunction.
The fact that the adjunction is relative to Cat™ implies that we have a well-defined projection
p: M — Cat™ x A! preserving both cartesian and cocartesian edges over A'. Since the restriction
of p to Cat™ x (AL [T A{1}) is both a cartesian and cocartesian fibration, one concludes that p
itself is both a locally cartesian and a locally cocartesian fibration. The condition that L preserves
cocartesian edges is then equivalent to this fibration being cocartesian, while the condition that

P

Lace preserves cartesian edges is equivalent to this fibration being cartesian. Both of these are
equivalent in this case to the fibration being exponentiable, see [AF20, Proposition 2.23].

Now since the adjunction L 4 Lace was constructed as a composite of two adjunctions, it will
suffice to show that each one of these refines to an adjunction relative to Cat®™ in which the
left adjoint preserves cocartesian edges. For the adjunction , let us simply point out that it is
obtained from an adjunction in Arlax(CAT) upon passing to lax limits. There is a hence a natural
transformation of adjunctions from to the image of this adjunction in ArlaX(CAT) under the
target projection ArlaX(CAT) — CAT. But this image is just the identity adjunction on Cat™,
and so we conclude that the adjunction refines to a relative adjunction

Al —— ace
(Cat™) —— 1 = Cat™*x

N

Cat™

(Catexya @ (Cat™)?

where the left diagonal arrow is the target projection and the right diagonal arrow is composite
Cat'aee X (CatEx)al®) (Cat™)A" - (Cat™)A" L Cat®*. Let us also point out that both sides
are (free) cocartesian fibrations where the cocartesian edges on the left hand side are the arrows

which are sent to equivalences by the source projection (CatEx)Al — (CatEX)A{O}7 while the the
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cocartesian arrows on the right hand side are those which are sent to equivalences by the projection
to Cat!®e. By construction these projections intertwine the left adjoint above with L, and hence
we see that this left adjoint preserves cocartesian edges.

Now consider the adjunction . As the right adjoint in visibly preserves the projection
to Cat™ by [Lurl?, Proposition 7.3.2.1] it will suffice to show that the components of the unit
map are sent to equivalences in Cat™. Indeed, this is a general fact about adjunctions arising
from cocartesian fibrations in this manner, see [AF20, Lemma 2.27]. Finally, the last part of
[AF20, Lemma 2.27] also stipulates that the left adjoint in question preserves cocartesian edges
over Cat™, and so the proof is complete. O

We now come to the main result of the present subsection.

Proposition 2.9 The diagram (6]) exhibits Cat'* as the stable envelope of (Cat™)2" over
Cat™ in the sense of [Lurl7, Definition 7.3.1.1]. In particular, it exhibits Cat'® as the
tangent bundle of Cat™.

The remainder of this subsection is devoted to the proof of Proposition [2.9] For this, note first

that since Lace is a right adjoint and preserves cartesian edges the statement of Proposition is
local: we need to check that for every C, the induced functor Lace(C, —): M — [Lace(C, M) — (]
exhibits Bimod(C) as the stabilization of Cat%‘. Since Bimod(C) is stable, this is equivalent to
saying that the induced functor

Lacel? : Bimod(C) — Sp(Cat}/Eé‘)
is an equivalence.

Definition 2.10 For C € Cat™, let us write

Qc: Cat{)c — Bimod(C)
for the functor sending a retract diagram C oD 7y € to the bimodule

CPxC—Sp  (x,y)— fibmapp(f(x), f(y)) — mape(z,y)).

We also write Qgp for the composite

QS Sp(Cat’) = Sp(Cat /) 2= CatlF}/e % Bimod(C).

Remark 2.11 In Definition under the identification Bimod(C) = Fun”(Ind(C),Ind(C)), the
C-bimodule mapp, o( f°P x f) corresponds to the colimit preserving endofunctor

Ind(f)2d o Ind(f): Ind(C) — Ind(C),

where Ind(f)*!: Ind(D) — Ind(C) is the right adjoint of Ind(f), and hence the C-bimodule
Qc(C ENy/, JEN C) corresponds to the endofunctor fib[Ind(f)2d o Ind(f) = id].

Proposition 2.12 For every stable category C the functor Qgp of Definition above is an
equivalence.

Proof of Proposition given Proposition Unwinding the definitions, for every
stable category C the composite

gp o Lacegp: Bimod(C) — Bimod(C)
sends a bimodule M to the bimodule

(2.) = £ib (mapgpeeqc an) (2.0, (3, 0)) — mape(z,y) ) = QM (x,y),

that is, Qgp o Lacegp is naturally equivalent to the loop functor on Bimod(C). In particular, this
composite is an equivalence. Since Qgp is an equivalence by Proposition it follows that Lacegp
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is an equivalence. Since Lace is a right adjoint alnd preserve cartesian edges it must therefore
exhibit Cat'®® as the stable envelope of (Cat™)2" | as desired. O

We now come to the proof of Proposition 2.12] It will make use of the following lemma, which
is an adaptation of [HNPI19, Corollary 2.4.9)].

Lemma 2.13 Let L: C L D: R be an adjunction between pointed categories with finite limits
such that the unit u and counit v both become equivalences after looping finitely many times
(that is, there exists an n such that Q"u and Q"v are natural equivalences). Then, the functor
induced by R on the stabilisations:

Sp(R): Sp(C) — Sp(D)

is an equivalence.

Proof. Recall that if C is a pointed category with finite limits, then, Sp(C) is also given by
following limit of categories:

Sp(C) :=lim(... —*» ¢ 25 ¢ 5 0)

Since R preserves limits, it induces a map of pro-objects, and so a map at the limit Sp(R): Sp(D) —
Sp(C). The hypothesis on L and R can be reformulated to say that the following diagram commutes

D —E ¢

D — C
where the triangular fillers are provided by the unit and the counit of the adjunction, and the
filling of the large square is also given by the homotopy witnessing that R commutes with Q™. In

consequence, R induces an equivalence of pro-object, and thus again an equivalence after taking
the limit. O

Remark 2.14 Note that the above proof also shows that L := Q"L induces a map of pro-objects
and so passing to the limit, a functor L : Sp(C) — Sp(D). In particular, the inverse of Sp(R) is
given by Sp(L) := X" L; under the equivalence Sp(C) ~ Exc,(S",C) and suitable hypotheses
on C, D, the explicit formula to compute excisive approximations in Goodwillie calculus shows
that Sp(L) unravels to be

Exc, (S57,¢) —£ Fun, (S5, D) 22 Exe, (S8, D)

with P;(—) being the first Goodwillie derivative, i.e. the left adjoint to the inclusion.

Proof of Proposition m Given an exact functor f: C — D we write im®'(f) for the
smallest full subcategory of D containing f(C) and closed under finite limits and colimits, and refer
to it as the stable image of f. We say that f is stably surjective if im®'(f) = D. The collection of
stably surjective functors is closed under composition, and we write Cat*® =% C Cat™ for the
wide subcategory consisting of the stably surjective functors. Observe that the collection of stably
surjective functors is part of an orthogonal factorization system on Cat™, whose right class is
that of fully-faithful functors. In other words, in any commutative square

A—— B

I

C——D

in Cat™ whose left vertical arrow is stably surjective and whose right vertical arrow is fully-
faithful the space of dotted lifts is contractible, and in addition every morphism C — D admits
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a factorization C — & — D into a stably surjective functor followed by a fully-faithful one. This
factorization is then automatically essentially unique, and we see that essentially the only option
is taking & = im®*(f).

For a given stable category C, it follows from the formalism of orthogonal factorization systems
that the induced functor

Catsct/ycs'lrj — Catg;‘/c
st — surj

is fully-faithful and admits a right adjoint Catg}‘/c — Cat, //c given by
€L Do [C—im(f) -

Since the inclusion im®**(i) < D is fully-faithful, we have that for every [C 4D 5 Cl e Catg;‘/c
the induced functor
C Ximst (4) C—>CxpC

is an equivalence. It hence follows that the counit of the adjunction Cat?:t/ycs w Cat(’c be-

comes an equivalence after looping one time. At the same time, the unit of this adjunction is an
equivalence (since the left adjoint is the inclusion of Catzt/ycs "), and hence by Lemma the
right-adjoint induces an equivalence

t — surjy = E
Sp(CatSC//Csu”) = Sp(Catc;‘/C)
Finally, let us point out that the functor Qc: Catg}‘/c — Bimod(C) sends arrows in Catg}‘/c
whose middle component is fully-faithful to equivalences, and hence factors essentially uniquely as
a composite .
Catg}‘/c — Catzt/ycsu” — Bimod(C),

where the second map is just the restriction of Q¢ to Catzt/ks " which we will also denote by Qc.
It will hence suffice to show that the composite

st —surjy Q2 st —surj Qc .
Sp(Cat;) ¢ ) — Cat., ¢ } =% Bimod(C)
is an equivalence.

By the Lurie-Barr-Beck theorem [Lurl7, Theorem 4.7.3.5], for a given stable presentable cat-
egory C, the operation that associates to a colimit-preserving monad T: C — C its category of
T-algebras yields a fully faithful functor

Alg(Fun™(C,C)) —— (Prhy)e, T —— [C 2275 Alg,(C))]

whose essential image consists of those left functors C — D among stable presentable categories
whose right adjoint D — C is colimit-preserving and conservative. In other words, those whose

right adjoint preserves and detects colimits. We note that if C S, D G £ are functors between
cocomplete categories such that G’ preserves and detects colimits then G preserves and detects
colimits if and only if G’ o G preserves and detects colimits. The formation of T-algebras as above
can hence be rewritten as an equivalence

Alg(Fun™(C,C)) —=— (Pro™), T —— [C =255 Alg,(C)]
where Pri;°" denotes the category whose objects are the stable presentable categories and whose
morphisms are the left functors C — D whose right adjoints preserve and detect colimits.

We note that if C is compactly generated and F': C — D is a left adjoint functor whose right
adjoint G: D — C preserves and detects colimits then D is automatically also compactly generated
and F automatically preserves compact objects. On the other hand, if f: C — D is an exact
functor between stable categories then Ind(f): Ind(C) — Ind(D) always has a colimit preserving
right adjoint Ind(D) — Ind(C), and this right adjoint is conservative if and only if the stable image
im®*(f) C D in the above sense is dense in D. We conclude that if C is a small stable category
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then associating to every colimit preserving monad on Ind(C) the stable image of the composite
Freer

C — Ind(C) — Alg;(Ind(C)) yields an equivalence
Alg(Fun® (Ind(€), Ind(0))) —= (Cat™~™)e; T s [C = imfl,,, . C Algy(Ind(C))]
and hence an equivalence

Alg(FunL(Ind(C),Ind(C)))/id — (CatSt*S“”‘)c//C T—— [C— im%?reeT — (]

le

By construction, the inverse of this equivalence sends C LD Cto Ind(f)*doInd(f) = id, where
Ind(f)2d: Ind(D) — Ind(C) is the right adjoint of Ind(f): Ind(C) — Ind(D). Now by [Lurl7
Theorem 7.3.4.13] the composite

Sp(Alg(Fun®(Ind(C), Ind(C))) /1a) ——— Alg(Fun’(Ind(C), md(C))),:a
l[p: T=-id]—fib(p)

Fun’ (Ind(C), Ind(C))
is an equivalence. We hence conclude that the composed functor

Sp(Caty, ;") <= Caty, " —— Fun®(Ind(C), nd(C))

is an equivalence, where the second functor is given by
¢ £ D = €] — fib (Ind(f)* o Tnd(f) = id)

Under the identification Fun®(Ind(C),Ind(C)) = Bimod(C), this last functor is exactly Qc (see
Remark , and so the proof is complete. O

2.3 The symmetric monoidal structure on Cat'®*

In this subsection we construct a symmetric monoidal structure on Cat'*® and study its basic

properties. To define it, let us recall a few facts about the Lurie tensor product, see [Lurlf,
Section 4.8.1].

Fix a class K of simplicial sets (considered as “diagram shapes”). Then the category Cat”®
of KC-cocomplete categories, that is, categories which admit K-colimits for every K € K, and K-
cocontinuous functors between them admits a tensor product, sometimes called the Lurie tensor
product, where for two K-cocomplete categories C,D their tensor product C ® D is the universal
recipient of a functor C x D — C ® D which preserve K-indexed colimits in each variable separately.

For IC the collection of finite simplicial sets the symmetric monoidal structure on Cat" =:
Cat™ is inherited by the full subcategory Cat™ C Cat™ of stable categories. In fact, the
inclusion Cat™ C Cat™ is reflective, with left adjoint Cat®™® — Cat™ given by tensoring with
the category Spfi® of finite spectra. In particular, it is a smashing localisation and so Cat™ inherits
the Lurie tensor product in a manner that makes the localisation functor symmetric monoidal and
the inclusion Cat® C Cat™ a tensor ideal. For two stable categories C,D the tensor product
C ® D is then the universal recipient of a biexact functor C x D — C ® D, and the unit of Cat™
is Spf™.

In the case where K consists of all small simplicial sets and we consider large categories then
Lurie shows that the associated tensor product preserves presentable categories, and so one obtains
an induced symmetric monoidal structure on Pr®. As in the case of small categories, the inclusion
Prﬁx C Pr of stable presentable categories inside all presentable categories is reflective and the left
adjoint Pr™ — Prg_, given by C ~— Sp(C) = Sp ® C, is again a smashing localisation, so that Pri,
inherits the Lurie tensor product in such a manner that the localisation Pr — PlrléX is symmetric
monoidal and Pr%x is an ideal in Pr. The unit of Prl}gX is Sp.

Finally, if L C K’ is a sequence of two classes of categories then the forgetful functor Cat® —
Cat’ admits a left adjoint 77%,: Cat® — Cat’c/, and this left adjoint canonically refines to a
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symmetric monoidal functor with respect to the Lurie tensor product, see [Lurl7, Remark 4.8.1.8].
In the case where K consists of finite simplicial sets and K’ of all small simplicial sets, this left
adjoint coincides with the Ind-completion functor Ind(—). This functor sends small categories to
presentable ones and Spi* to Sp, and so fits into a square of symmetric monoidal functors

Catﬁn Ind PI‘L
<—>®Spﬁnl l(’)@’Sp

I
Cat®™ 24, prL

in which the horizontal functors are given by Ind completion and the vertical ones by stabilization.

m Construction 2.15 Recall that the category Cat'®® sits in a fibre square of the form

Catlace AI‘OplaX (PI’EX)

|

Ex (Ind,Ind) L L
_— .
Pry, x Pry,

Cat

Equipping Cat™, Pr;, and Ar°P'**(Prg, ) with the symmetric monoidal product pointwise induced
by the Lurie tensor product on Cat™ and PrgX the bottom right part of this square acquires a
symmetric monoidal refinement (see [Lurl?, Remark 4.8.1.8]), which then induces a symmetric
monoidal structure on Cat'®® such that the projection Cat'®® — Cat®* is symmetric monoidal.
In addition, as the natural transformation of diagrams is compatible by construction with
pointwise Lurie tensor products everywhere, we obtain that the functor L canonically refines to a

symmetric monoidal functor
L: (Cat®)® — (Cat'**)®,

Consequently, the unit of (Catlace)‘g’ is given by (Spfi*,id) = L(Spfn).

Remark 2.16 Explicitly, the tensor product of two laced categories (C, F') and (D, G) is given by
(C®D, FXRG), where FXG is the endo-functor of Ind(C ® D) = Ind(C) ® Ind(D) induced by F
and G. If we instead view bimodules as exact functors F': C°?  C — Sp and G: D°°* ® D — Sp,
then

FRG: (CPDP)®(C®D)=(CPxC)® (D®®D)— Sp

is induced by the biexact functor
(C°P ®C) x (D @ D) =2% Sp x Sp —2— Sp,
where the last map is the tensor (smash) product of spectra.

By the adjunction of Proposition the unit (Spf”,id) of Cat'**® corepresents the functor
Lace™, where ¢ denotes the core-groupoid functor Cat™ — S. We can thus extract from the
results of [Nik16] another universal property for Lace™:

lace

Lemma 2.17 Lace™ is the initial lax-monoidal Cat — S. Consequently, X3 Lace™ is the

initial lax-monoidal functor Cat'®*® — Sp.

Proof. The first part is an application of [Nik16, Corollary 6.8]. The second part follows from
point (4) of Corollary 6.9 of loc. cit. O

Remark 2.18 To avoid confusion, let us point out that for a fixed stable category C, the sta-
ble category Bimod(C) = Fun”(Ind(C),Ind(C)) admits a (non-symmetric) monoidal structure
given by composition of endo-functors. This structure is different and unrelated to the one of
Construction

Our next goal is to show that the symmetric monoidal structure of Construction [2.15]is closed
and give an explicit description of the internal mapping objects.
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Definition 2.19 Fix (C, F), (D, G) two laced categories and let f, g: C — D be two exact functors.
We define the spectrum of (F,G)-linear natural transformations from f to g by the formula:

Nat(f, g) := Nat(F, (f° © 9)*G),

where the right hand side object is the spectrum given by the enrichment in Sp of the stable
category Bimod(C). This is exact in both f and g, covariant in g and contravariant in f, hence
defines a bimodule NatZ, on Fun®(C, D). We denote Fun((C, F), (D, G)) the associated laced

category.

Recall that the symmetric monoidal structure on Cat™ is closed with internal mapping object
Fun®*(—, —). In particular, there is an exact, natural, evaluation functor ev: C® Fun®(C, D) — D
which enjoys the following universal property: for every stable category £ the composed map

Mapgages (€, Fun®™(C, D)) — Mapgaeex (C ® £,C @ Fun®™(C, D)) =% Mapgueex (C ® £, D)

is an equivalence of spaces. In the presence of bimodules F,G on C and D respectively, we claim
that ev refines to a laced functor

(ev,7ev): (C, F) © Fun((C, F), (D, G)) — (D, G).
To obtain the structure map 7ey: F'X Natg = (ev°P x ev)*G, consider the tensor-hom adjunction
Lr:=F®(-): Sp L Bimod(C): Nat(F,—) =: Rp

associated to F', which arises from the structure of Bimod(C) as tensored over Sp. Then for every
stable category A we have an induced adjunction

Lpo(—): Fun®™(A4,Sp) L Fun™ (A, Bimod(C)): Rr o (—). (7)
via post-composition. Let now
G’: Fun®™(C,D)°P ® Fun®™(C, D) — Bimod(C)
be the functor associated to (ev°P x ev)*G € Bimod(C ® Fun™(C, D)) via the currying equivalence
Bimod(C ® Fun®™(C, D)) = Fun™ (Fun®™(C, D)°? ® Fun™(C, D), Bimod(C)).

explicitly, G’ corresponds to the biexact functor (f,g) — (f°P x ¢)*G € Bimod(C), and we have
Rp o G' = Natl, essentially by construction. The counit of Lz o (=) 4 Rp o (=) then provides a
map of the form L o Rp o G’ = G’, which after passing back via the currying equivalence gives
the map

Nev: F B Nath = (evoP x ev)*G

we use to define the laced enhancement of ev.

Proposition 2.20 Let (C,F) be a laced category. Then for every laced category (£,H) the
composed map

Mapcagiace ((87 H)a @((C’ F)7 (D7 G)))

|

Mapgagace ((C, F) ® (€, H), (C, F) ® Fun((C, F), (D, G)))

—~

Mapcagiace ((Cv F)® (57 H)v (Da G))

is an equivalence of spaces.

Corollary 2.21 The symmetric monoidal structure on Cat'**® is closed with internal mapping

objects given by Fun(—, —). In particular, the association ((C, F), (D, G)) — Fun((C, F), (D, G))
canonically upgrades to a functor Cat'**® x Cat'**® — Cat'a°.
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Since L: Cat™ — Cat'®® is symmetric monoidal we also conclude

Corollary 2.22 The category Cat'*® is tensored, cotensored and enriched over Cat®™. The

tensor and cotensor structures are given by
C®(D,G)=(C,id)® (D,G) and (D,G)¢ = Fun((C,id),(D,Q)),
while the enrichment is given by

(C,F),(D,G) ~ LaceFun((C, F), (D, G))

Remark 2.23 Since (Spfi”,id) is the unit of Cat'®*® we have
Mapgagiace ((C, F), (D, G)) =Mapgggiacs (Sp™,id), Fun((C, F), (D, G)))
= Lace™ Fun((C, F), (D, G))

Proof of Proposition m Since fgt: Cat'®® — Cat™ is a bicartesian fibration the
composed map of (2.20) fits in the top row of a commutative square of spaces

Mapgagiace (€, H), Fun((C, F), (D, G))) —— Mapgague((C, F) ® (€, H), (D, G))

| J

Mapgages (€, Fan™(C, D)) = Mapgaeex (C ® €, D)

where the bottom horizontal arrow is an equivalence by the universal property of the underly-
ing exact functor ev. Hence, it remains to show that the induced map on vertical fibres is an
equivalence. B
Fix an exact functor ¢: & — Fun®(C, D) and write ¢ for the associate composite
$: C® & 2122 ¢ @ Fun™(C, D) <% D,

so that ¢ is the image of ¢ in the right bottom corner. Then the induced map from the vertical

fibre over ¢ to the vertical fibre over ¢ is given by the composed map
Nat(H, (¢°P x ¢)* Nat&) — Nat(F X H, F K (¢°P x ¢)* Nat§)
—Nat(FRH, (6 x $)*G)
where the last map is induced by the natural transformation 7, : F B Nats, = (evoP x ev)*G after

restricting along id ®¢: C® & — C ® Fun®(C, D), where we note that ¢ = evo(id ®¢). To see that
this map is an equivalence, let us translate it through the currying equivalence

Bimod(C ® £) = Fun®(£°P @ &£, Bimod(C)).

Write G : £°P ® £ — Bimod(C) for the exact functor corresponding to (¢ x ¢)*G. Explicitly, G’
corresponds to the biexact functor £ x € 5 (z,y) — (¢(x) X ¢(y))*G € Bimod(C). Let

Lpo(—): Fun®™(£° ® £,Sp) L Fun™(£°P @ £, Bimod(C)): Rp o (—)
be the adjunction determined by F' as in (for A= E°P ®E). Then the composite

Rpo(—)
el WA

£ @ & % Bimod(C) Sp

is the &-bimodule (¢°P x ¢)* Natg by construction, and the above composed map can be rewritten
as

Mapppes (gorge,sp) (Hy B © G') = Mappyyex gop £ Bimod(c)) (LF © H, Lp 0 Rp 0 G')
- MapFunEX(EOF’ x&,Bimod(C)) (LF oH, Gl)

where the second map is given by the counit of Lg o (—) L Rp o (—). We conclude that this
composite is indeed an equivalence by adjunction. O
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2.4 Tensors and cotensors by unstable laced categories

In this subsection we define an unstable version Cat® of Cat'®*® and show that Cat'*“® is tensored

and cotensored over Cat”. These operations will be essential in studying trace-like functors on
Cat'*° in Section [4l

Let P: Cat — Pr" be the functor which associates to a small category Z the presentable
category P(Z) of space-valued presheaves on Z. The Yoneda embedding j: Z — P(Z) exhibits
P(Z) as the universal cocomplete recipient of a functor from Z, that is, for every cocomplete
category &, colimit-preserving functors P(Z) — £ correspond, via restriction along j, to functors
7 — £. In addition, by [Lurl7, Remark 4.8.1.8], P refines to a symmetric monoidal functor, where
Cat carries the cartesian product and Pr" the Lurie tensor product.

m Construction 2.24 We define (Catb)® to be the symmetric monoidal category sitting in a fibre
square

(Cat®)® — 5 ArePlax(prl)®

J(S»t)

PP, (prhy@ x (Prh)®

Cat”
where the bottom left corner is endowed with the cartesian monoidal structure and the corners on
the right with the pointwise Lurie symmetric monoidal structure.

Explicitly, an object of Cat® can be described as a pair (Z, B) where 7 is a small category and
B: P(T) — P(Z) is a colimit preserving functor. Equivalently, B can be described as the data of
a functor Z°? x 7 — §. We refer to such pairs as unstable laced categories.

As in the case of laced categories, it follows form [HHLN20, Theorem 7.21] that the right
vertical arrow in the above square is the orthofibration classified by the bifunctor Fun” (=, ),
and since P sends every arrow in Cat to a strongly continuous functor (that is, to an internal
left adjoint in PrL)7 the left vertical arrow is the cartesian and cocartesian fibration classified by
Z+— Fun(Z°? x Z, S).

Remark 2.25 Explicitly, if (Z, B) and (J, C) are two unstable laced categories then their tensor
product is given by (Z x J,B X C), where BX C: (Z°° x J°P) x (Z x J) — S is given
by (BX C)(i,j,4,5") = B(i,i") x C(4,5'). In fact, this is the cartesian symmetric monoidal
structure on Cat®. Though we could have more easily defined this structure this way, the path
we took was chosen in order to facilitate the construction of a symmetric monoidal functor
Cat” — Cat'*® below.

Our next step is to construct a symmetric monoidal adjunction Cat® L Catlace, that is an
adjunction where the left adjoint carries a symmetric monoidal structure (and the right adjoint an
induced lax symmetric monoidal structure).

For this, recall that the (non-full) inclusion U : Cat™ — Cat admits a left adjoint St: Cat —
Cat"™ defined as follows. Given a category Z, the stable category St(Z) is given by the smallest
stable subcategory of Fun(Z°P, Sp) containing the presheaves 33° Map(—, 1) for every ¢ € Z. Since
the presheaves 39° Mapz(—,4) constitute a family of compact generators for Fun(Z°?, Sp) we have
in particular that

Ind(St(Z)) = Fun(Z°?, Sp) = Sp(P(Z)) = P(Z) ® Sp

is the stabilization of P(Z), and we have a commutative square

Cat®x 1nd, PrE,

In addition, the functor St refines to a symmetric monoidal functor Cat* — (Cat™)®, which is
essentially because we can write it as a composite of symmetric monoidal left adjoints

. _)y@Spin
Cat* Pin Catfin (—)®Sp CatEx
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where Py, is the free cocompletion functor, which is symmetric monoidal by [Lurl7, Remark
4.8.1.8]. The natural transformation of diagrams of symmetric monoidal categories

AI‘OplaX(PI'L)® AI’OplaX(PI‘EX)®

l(s,t) = ‘/

g S (Pr)® x (Pr)®

Cat* ~—5 (Pr')® x (Pr™)® (Cat™)®
whose bottom left component is St and the other two components are induced from the stabilization
functor Sp ®(—): Pr" — Prg, now induces a symmetric monoidal functor

St: (Cat®)® — (Cat'®*)®
Explicitly, this functor sends (Z, B) to (St(Z), St(B)), where
St(B) : St(Z)°P @ St(Z) = St(Z°? x Z) — Sp

is the exact functor corresponding to the functor ¥°B: Z°° xZ — Sp via the adjunction St 4 U. In
particular, since Cat® — Cat and Cat'®® — Cat™ are both cartesian fibrations, the adjunctions
of St 4 U and X5° 4 Q° induce, for an unstable laced category (Z, B) and a stable laced category
(C, M), a natural equivalence:

Mapgagisce ((SH(Z), St(B)), (C, M)) =~ Mapcae» (2, B), (U(C), 2 M))

Hence St admits a right adjoint U: Cat'®® — Cat® given by (C,M) — (U(C),Q2°M) and in

particular, U inherits a lax symmetric monoidal structure and St 4 U is a symmetric monoidal
adjunction.

Corollary 2.26 The category Cat'®*® is tensored, cotensored and enriched over Cat®, where the
tensor and cotensor operations are given by

(Z,B)® (C,M) = St(Z,B) ® (C,M) and (C,M)%B) = Fun(St(Z, B), (C, M))
and the enrichment is given by
(¢, M), (D,N)) — U (Fun((C, M), (D, N)))

Let us now take a closer look at the cotensor construction. Given a laced category (C, M) and
an unstable laced category (Z, B), the cotensor (C, M)Z-B) is given by the internal mapping object
Fun(St(Z, B), (C, M)) = Fun((St(Z), St(B)), (C, M)). As constructed explicitly in Section this
has as underlying stable category the functor category

Fun®™(St(Z),C) = Fun(Z,C)

and given two diagrams ¢, ¢ : Z — C with associated exact functors 5, zz : St(Z) — C, the associated

bimodule Natﬁ/t[(B) on Fun((St(Z),St(B)), (C, M)) is given by the equivalent expressions

Nat3H?) (4, ) := Nat(St(B), (¢° x 1)* M)
~ Nat(XB, (¢°P x ¢)"M)
~ Nat(B, (¢°P x )" QM)
m Example 2.27 Suppose B = x: Z°? x 7 — § is the terminal functor. Given a laced category
(C, M) we have
Nat(x, (7 x )" QM) ~ = lim —_M(¢(i), ¥ (j))
(4,)ETPXT

In particular, in the case where Z = [n] is the linearly order poset with n elements, we get that

MU (6 4p) =~ Q% M (¢p(n), 1(0))

Viewing a diagram ¢: [n] — C as the data of a sequence Xy — ... = X,,, the above bimodule is
simply M (X,,,Ys) for two sequences (X;) and (Y;). "
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m Example 2.28 Suppose Z = Al and take B := Mapa: to be the mapping space bifunctor. Let
¢: A' — C and ¢: A' — C be two arrows in C, corresponding to morphisms f: X — Y and
g: X' =Y’ in C. Given a C-bimodule M we then have an equivalence

Nat(Mapas, (¢°7 x ¢)"M) ~ M(X, X') xpr(x,yn) M(Y,Y")

where the maps of the pullback are induced by f and g under M.
More generally, if Z = [n] and B = Mapy,,) its mapping space, then we have

Nat(Mapy,), (6 x ) M) = T - M(9(i), 9(7),

which recovers the above when n = 1. n

3 The K-theory of laced categories

3.1 Additivity and semi-orthogonal decompositions

Recall that a semi-orthogonal decomposition of a stable category C is the datum of a pair of full
subcategories A C C O B satisfying the following two conditions:

(Decomposition) Every X € C fits in an exact sequence A — X — B with A € A and B € B.
(Semi-orthogonality) For every A € A and B € B, mapy(A, B) ~ 0

The semi-orthogonality condition ensures that the decomposition of the first condition is unique,
and thus functorial. Sending X to the first term in its decomposition sequence then gives a right
adjoint to the inclusion of A, and sending it to the last term gives a left adjoint to the inclusion of
B.

The data of a semi-orthogonal decomposition is hence equivalent to the a-priori stronger notion
a right-split Verdier sequence, i.e., a null-composite sequence

A—tsc LB
*— ——

such that ¢ is fully-faithful and has a right adjoint and p has a fully-faithful right adjoint, as
studied in [CDH™23b, Appendix A.2]. Passing to right adjoints gives a left-split Verdier sequence
encoding the same data; the formalism of semi-orthogonal decompositions can then be considered
as a symmetric manner to express one-side-split Verdier sequences.

Note however that the condition of being a semi-orthogonal decomposition remains asymmetric
in the couple (A, B).

Remark 3.1 A semi-orthogonal decomposition in which the inclusion of .4 admits both adjoints
is also called a stable recollement in [Lurl7]. It is equivalent to the data of a split Verdier
sequence, that is, a Verdier sequence in which the inclusion and the projection admit both
adjoints, see [CDH"23b, Appendix A.2].

We now give a definition in the laced setting. By a laced full subcategory (D, N) C (C, M) we
will mean a full subcategory D C C equipped with an identification N = M |porxp. Equivalently,
this is the data of a laced functor (D, N) — (C, M) whose underlying exact functor is fully-faithful
and such that the structure map N — M|perxp is an equivalence.

Definition 3.2 Let (C, M) be a laced category. A laced semi-orthogonal decomposition of (C, M)
is a pair of laced full subcategories (A, N) C (C, M) 2 (B, P) satisfying the following conditions:

(Underlying) The underlying pair of stable subcategories A C C O B is a semi-orthogonal
decomposition of C.

(Laced semi-orthogonality) For every A € A and B € B we have M (A, B) ~ 0.

Lemma 3.3 Let (A, N) C (C,M) 2 (B, P) be a laced semi-orthogonal decomposition. Then, the
left adjoint p of the inclusion j: B — C canonically upgrades to a laced functor (p,n): (C, M) —
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(B, P) in such a way that

CION

(A, N) (C M) —= (B N)

. 1
becomes a fibre-cofibre sequence in Cat *°°.

Proof. To construct a natural transformation n: M = P o (p°P x p) it suffices to construct its
mate 7: (p°P X p)1M = P. We can factor p°P X p as follows:

PP X p P x € —LXP cop 5 g P pop 3
Left Kan extension is functorial, as the left adjoint of precomposition, hence in two steps, by first
left Kan extending along id xp and then along p°? x id. The first step can be implemented by
restriction along the inclusion j: B < C, since j is right adjoint to p.

Let us now write M': B°? x B — Sp for the left Kan extension of M(—,j(—)) along p°P x id.
Since p: C — B is a semi-split Verdier projection with kernel A, it exhibits B as the localisation
of C by equivalences modulo A, that is, by the arrows whose fibre lies in 4. At the same time,
by the laced semi-orthogonality assumption M (i(—),j(—)) = 0, so that M(—,j(—)) is invariant
under equivalences modulo A in the first coordinate, and hence descends to a biexact functor
B°P x B — Sp in an essentially unique manner. More precisely, the unit map

M(=,j(=)) = M'(p(=),-)

is an equivalence. The structure natural transformation P — M o (j°P x j) of j then determines
an equivalence P ~ M’ and so we obtain an equivalence 7: (p°? X p)iM ~ P, which refines p to a
laced functor.

To show that the resulting sequence of laced categories is both a fibre and a cofibre sequence,
note that on the level of underlying stable categories the sequence

A—~c—-L5B

is fibre and cofibre, and hence to check its enhancement to Cat'®® is a fibre-cofibre, it suffices to
check that a: N — M o (i°P x ) is an equivalence and that the mate 7: (p°® x p)yM — N of n is
an equivalence. The former is by assumption and the latter by our construction of 1 above. O

We now describe three types of examples of laced semi-orthogonal decompositions which will
prove useful in later parts of the paper.

m Example 3.4 If A C C D B is a semi-orthogonal decomposition then (A, map4) C (C,map;) 2
(B, mapy) is a laced semi-orthogonal decomposition. Indeed, the fact that A C C D B are full
subcategory inclusions directly implies that (A, map,4) C (C,map;) 2 (B, mapg) are laced full

subcategory inclusions, and the laced semi-orthogonality condition is simply semi-orthogonality of
the underlying stable decomposition in this case. [

m Example 3.5 The cotensored laced category (C, M ) 1],Map) f Examplencan be obtalned as the
semi-orthogonal decomposition of two copies of (C, M). Indeed, it is a classical fact that clis the
semi-orthogonal decomposition of two copies of C, the inclusions being given by i: X — (X — 0)
and j: X — idx. As described in Example the bimodule of (C, M)([1:Map) fits in a cartesian
square of the form

MIIMap) (£ X 5V, g: X' = Y') —— M(Y,Y")

l lM(fﬁ) (8)

M(X, X') M=) M(X,Y").

Plugging in Y = Y’ = 0 makes the vertical maps into equivalences, and plugging f,g being
identities makes all the maps into equivalences, so that in both cases the left vertical map is an
equivalence. We consequently obtain equivalences a: M = M([Map) o (°P x 4) and f: M =
M([:Map) o (jop » ) vielding laced full subcategory inclusions

€, M) <2 e anyaan) G oy
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To see that this is a laced semi-orthogonal decomposition note that if one takes Y = 0 and
g = id in (8] then the horizontal maps are equivalences and the top right corner vanishes, so that
M (1] Map) Vanlshes yielding laced semi-orthogonality. [

m Example 3.6 Let us now consider the cotensor (C, M)([1*) of example The underlying stable
category is the same as in Example [3.5] and the bimodule is given by the formula

MO (X 5V, g: X' 5 Y')~ MY, X).

If Y =Y’ = 0 then M%) vanishes whereas it recovers M in the case where f, g are identities, so
that we have a pair of laced full subcategory inclusions

(1 a) (4,8)

(C,0) === (€, M)([IMap) 222 (C, M)
To see that this is a laced semi-orthogonal decomposition note that M{*) in fact vanishes as
soon as Y = 0 (regardless of X', Y”) so that we have laced semi-orthogonality. "

Proposition 3.7 The pair of adjoint functors L: Cat™ 1 Cat!®® : Lace both preserve semi-
orthogonal decompositions.

Proof. For L, this is the content of Example 3.4 Now let (A4,N) C (C,M) 2 (B,P) be a
laced semi- orthogonal decomposition. Then we have an induced pair of full subcategory inclusions
Lace(A, N) C Lace(C, M) D Lace(B, P) and we want to show that it constitutes a semi-orthogonal
decomposition.

Let (X, f) be an object of Lace(C, M), so that X € C and f: X — M(X) is a morphism.
Since (A, B) is an orthogonal decomposition of C, we have an exact sequence ¢(X) — X — p(X)
where p: C — B and ¢q: C — A are the corresponding reflection and coreflection functors and
we omit the inclusions from the notation. By the laced semi-orthogonality condition we have
map(q(X), M(p(X))) = 0, and so the map X — M (X) extends in an essentially unique manner
to a commutative diagram

q4(X) X p(X)

| | |

M(q(X)) —— M(X) —— M(p(X))

in which both rows are fibre sequences. At the same time, since (A, N) C (C,M) D (B, P) are
laced full subcategory inclusions this is exactly the datum of an exact sequence in Lace(C, M)
whose first term is in Lace(A, N), last term is in Lace(B, P) and middle term is (X, f), hence we
have decompositions.

For the semi-orthogonality, note that by the cartesian square , mapping spaces in Lace(C, M)
can be expressed as equalizers; explicitly, we need to show that for every (A, f) € Lace(A, N),
(B, g) € Lace(B, P), the following spectrum vanishes:

M(=)of

Eq | mapq(A, B)
( ¢ Mg)o(~

maplndc(Aa M(B)) )

This follows from the fact that both map,(A, B) and map(A4, M (B)) vanish, the former by semi-
orthogonality of the underlying (A, B) and the latter by laced semi-orthogonality. O

3.2 The universal property of laced K-theory

Let € be a stable co-category and F: Cat™ — £ a functor. We say that F is reduced if it sends
the zero stable category to the zero object. For a reduced functor F: Cat™ — &, the following
properties are equivalent (see [HLS23, Proposition 2.4]):

e F sends semi-orthogonal decompositions to direct sums.

e F sends left-split Verdier sequences to exact sequences.
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e F sends right-split Verdier sequence to exact sequences.
e F sends split Verdier sequences to exact sequences.

o F is extension splitting, that is, it sends the semi-orthogonal decomposition ¢ € ¢!l D ¢
(which is actually a recollement, see Remark [3.1)) underlying Examples and to a
direct sum.

A reduced functor F: Cat® — € satisfying any of these equivalent conditions is called additive.
A key example of an additive functor is the K-theory functor K: Cat®™ — Sp. In fact, this functor
enjoys a universal property with respect to additive functors, as established in [BGT13]:

Proposition 3.8 — Blumberg-Gepner-Tabuada. The natural transformation ¥5° ¢ = K of functors
Cat™ — Sp exhibits algebraic K-theory as the initial additive invariant under %° ¢.

We propose the following definition as a laced counterpart of additivity.

Definition 3.9 Let € be a stable category. We say that a functor F: Cat'®® — £ is additive if
it is reduced and sends laced semi-orthogonal decompositions to direct sum decompositions in

£.

Definition 3.10 Write K'**°: Cat!®*® — Sp for the composite
Catloe Lace, catfx K, g

It comes naturally equipped with a natural transformation X Lace™ — Klace,

By Theorem K!e¢¢ is additive, since K: Cat™ — Sp is so and Lace preserves orthogonal
decompositions.

Theorem 3.11 The natural transformation ¥5° Lace™ = K'e¢ of functors Cat'**® — Sp exhibits
laced K-theory as the initial additive invariant under ¥5° Lace™.

Proof. First, as we mention above, since Lace preserves semi-orthogonal decompositions and
K: Cat™ — Sp is additive, so is K'®°. Second, since L is left adjoint to Lace the associated
precomposition functor L* is right adjoint to the pre-composition functor Lace®. For every functor
F: Cat'*°® — Sp we may then consider the commutative square

Nat(K'*“, F) —— Nat(X%° Lace™, F)

- !

Nat(K, F o L) —— Nat(3¥ ¢, Fo L)

whose vertical legs are equivalences. But if F' is additive then so is F o L by Propositions and
hence by Proposition [3.8] the bottom horizontal map is an equivalence, so that the top horizontal
map is an equivalence as well. O

Remark 3.12 In the laced setting, the construction of non-commutative additive motives of
[BGT13] can be adapted to give a presentable stable Mé‘fﬁ and a universal additive

lace . lace lace
Uadd : Cat — Madd

As in loc. cit., this is done using Proposition 5.3.6.2 of [Lur08|, and then taking the Spannier-
Whitehead stabilization, once set-theoretic problems have been dealt with. This direction can
be followed using a similar approach to [CDH™23c|, but since this category of motives will not
play a role in the subsequent sections, we will not pursue these ideas here.
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4 Trace-like functors and topological Hochschild homology

In the previous sections, we have built a category Cat'®*® and extended algebraic K-theory into a

functor K'%¢: Cat'*® — Sp which we have characterized by a universal property. In this section
we add to our discussion the functor THH which associates to a stable category its Hochschild
homology. Extending THH to laced categories, we show that this contexts affords THH a new
universal property, expressed via the notion of trace invariance. Unlike the case of K-theory, this
universal property is only visible when passing to the laced setting. Using this universal property we
show in Section [£.4] that THH with coefficients is the first Goodwillie derivative of laced K-theory.

4.1 Variants of THH and the cyclic bar construction

In this section we recall Hochschild homology of stable categories and explain how to extend the
construction to the laced setting. For this, let us first recall the unstable version of the construction.

Definition 4.1 Let C be an category. The unstable topological Hochschild homology of C is the
space uTHH(C) given by the coend formula

XeC
THH(C) = Map (X, X) := li Map, (Y, X
u ©) / ape(X, X) box ol ape(Y, X),

where Map, denote the mapping space of C and TwAr(C) is the twisted arrow category of C.
This construction defines a functor uTHH: Cat — S.

Remark 4.2 If C = G is an oco-groupoid then TwAr(G) = Ar(G) = G and we have a natural
equivalence
uTHH(G) = coéién Q.G = Map(S*,G).
x

In particular, the following composite
C~ — Fun(S*,C=) = uTHH(C™) — uTHH(C)
provides a natural transformation ¢ = uTHH.

To pass from unstable to stable THH, recall that any stable category C is canonically enriched
in spectra, and this enrichment, denoted map.(—, —), is characterized to the unique functor exact
in both variables such that

MapC(77 7) =0~ mapc(*a 7)

where the left hand side is the mapping space functor.

Definition 4.3 Let C be a stable category. The topological Hochschild homology of C is the
spectrum THH(C) given by the coend formula

XecC
THH(C) =/ mape (X, X) = N ngg%Ar(C)mapc(KX)~

This construction defines a functor THH: Cat®™ — Sp, and the above observation endows it
with a canonical natural transformation uTHH =- 2°° THH or equivalently, ¥° uTHH = THH.

Remark 4.4 The above definition may appear different than some of the definitions for THH
previously considered in the literature, and which typically use some form of the cyclic bar
construction, see, e.g., [BGT13| Section 10], [NS17, Definition I11.2.3], [HSS17], or the more
recent [KMN23]. We will however show below (see Remark the above coend construction
(and more generally, its version with coefficients) can equivalently be expressed as a suitable
cyclic bar construction, so that the above definition is compatible with the existing literature.
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Remark 4.5 Let C be stable and consider the composition:
C~ — Fun(S',C~) = uTHH(C™) — uTHH(C) — Q> THH(C)

This map is natural in C, thus induces a natural transformation ¥°+ = THH. The Bokstedt
trace K = THH is then obtained by the universal property of K, using that THH is additive
(see [BGT13| Proposition 10.2] or the results below).

The above definitions can be upgraded seamlessly to the laced setting.

Definition 4.6 Let (C, M) be a laced category. The topological Hochschild homology of (C, M) is
the spectrum THH(C, M) given by the coend formula

XecC

THH(C, M) = M(X,X)=  colim  M(Y,X).
f: X=>YeTwAr(C)

This construction defines a functor THH: Cat'®® — Sp. Similarly, for pairs (Z,F) with I a
category and F' a functor F': Z°P x 7 — S, we can also define the unstable topological Hochschild
homology by:
Xez
WTHH(Z, F) = / F(X,X)= _ colim  F(Y,X)
f: X=YeTwAr(T)

The functor uTHH: Cat” — S is such that, when restricted to Catlace, we have a natural
transformation ¥5° uwTHH = THH.

We now seek to show that the THH we defined can also be realize as some version of a cyclic Bar
construction, i.e. the geometric realization of a cyclic object which looks like the Bar construction
where some terms have been modified to be cyclic.

Definition 4.7 Let (C, M) be a laced category, we denote Bar,,(C, M) the following space :
Barn(C, M) = Lace:((c’ M)([Tl],*))

By functoriality of the cotensor, those spaces assemble into a functor Bar,: Cat'*®® — SA™.
We call it the cyclic bar construction of the functor Lace™.

Unwinding the above definition, the objects of the cotensored category (C, M )([”]’*) are chains
Xo — ... =& X, in C, while a lacing on such an object corresponds to a point in QM (X,,, Xo),
which we can equivalently see as an arrow X,, — M (Xj) in Ind C. Hence, Lace((C, M){"*)) is the
category of n-cycles where n — 1 terms are simply arrows X; — X1, i.e, points in Map(X;, X;+1),
and the last term is “cycling back”, but in a twisted way, giving a point in Map(X,,, M (Xy)).

Proposition 4.8 Let (C, M) € Cat'®°. We have a natural equivalence
uTHH(C, M) ~ | Bare(C, M)|
Proof. By definition, uTHH(C, M) is given by the colimit of the composite QM o p, where
p: TwAr(C) —» C x CP

is the right fibration classifying the mapping space of C. Let T}, := Map(A™, TwAr(C)). Then the
inclusion Ty ~ TwAr(C)= — TwAr(C) yields a composed map

do QMo p S

bn Ty T TwAr(C)

By Corollary 12.5 of [Sha23] (the Bousfield-Kan formula), taking the colimit produces a simplicial
object Xo = colimy, ¢o whose geometric realization recovers uTHH(C, M).

We now identify each X, in terms of the cyclic bar construction. Recall from [Barl3, Section
2.2] that the edgewise subdivision is the functor e: A — A given by [n] — [n] * [n]°? =~ [2n + 1].
The functor e°P: A°P — A°P is cofinal, so that we are reduced to show that there is an equivalence
Xy >~ Barg(,)(C, M) natural in [n] € A.
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By definition, Bar(,)(C, M) ~ Lace™((C, M) #[7]:%)) Remark that on the underlying stable
categories, we have C["""*["l ~ TwAr(C)"); we can also rewrite the bimodule under this equiva-
lence, and we claim the following holds:

(€, M) 04) = (TwAr(C), M o p)(1)

This is the case when n = 0 by Example More generally, recall that if I = {ip < ... < i} is
linearly ordered, the formula for M*) is the evaluation M (X (i), Y (ig)), again by Example
For I = [n]°® x [n], this is the following diagram where we colored in red the rightmost-vertical
arrow, which corresponds to the first point when passing to the twisted-arrow-category point of
view:

S S A

In particular, we deduce that M (M°7*[nl%) ~ (M op)(["]’*) as wanted. Finally, to recover the colimit
defining X,,, remark that there is an equivalence

Lace™(D,N) ~ g{oliDm Q°N(X, X)
6 ~

since Lace™(D, N) — D= is the left fibration classifying QN o A, where A: C= — (C°P)~ x C~
is the diagonal (see [Sau23b, Lemma 3.7] for a proof). Applied to the rewriting we produced, we
get an equivalence
Bar.,,(C, M) ~ colim QM o p(Y(0
( )( ) Y €(TwAr(C)Inl)= p( ( ))

where we recognize on the right hand side the definition of X,,. This concludes. O

4.2 Trace-like functors

The inclusion of the 0-simplices in the cyclic Bar construction yields a natural transformation
Lace™ —— uTHH. Our goal is to show that this natural transformation exhibits its target as the
initial functor under Lace™ for a certain property, which we call being trace-like. In fact, we will
show more generally that this happens for the natural transformation F' — cyc(F'), where cyc(F)
is cyclic bar construction adapted to a general functor F': Cat'**® — Sp, taking the role of Lace™.

Definition 4.9 Let f,g: (C, M) — (D, N) be two laced functors. A trace homotopy from f to g
is a functor H: (C, M) — (D, N)(1:*) such that the following diagram commutes:

(D, N)

\

€, M) —— (D, N)[1»).

1

/

(D, N)

A laced functor f: (C,M) — (D,N) is a trace equivalence if there exists a laced functor
g: (D,N) — (C, M) such that go f and f o g are trace homotopic to the respective identi-
ties.

By the adjunction of tensor and cotensor, a laced homotopy from f to g can equivalently by
encoded by a laced functor (C, M)q,«) — (D, N) fitting into a commutative diagram

(C, M)
//;
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Equivalently, this is the data of a 1-simplex in the simplicial space
Bar, Fun((C, M), (D, N)) = Mapgagice ((C, M), (D, N) 1)) = Mapgygince (€, M) (o), (D, N)).

m Example 4.10 Both dy and d; are trace equivalences, with the same trace inverse s: (C, M) —
(€, M)(1:%) | Indeed, since s o dy = s o d; = id already, it suffices to find a laced arrow

H: (¢, M) —— (¢, m)Bx[»)

such that dy o H = id and d; o H = dy o s. We can simply pick H to be induced by the first
projection [1] x [1] — [1]. Similarly, using the dual characterization of laced homotopies we
see that do,dy: (C, M) — (C, M) (11,4 are both laced equivalences with the same trace inverse
§: (C,M)([l]’*) — (C,M) |

Let us give a non-trivial example of a trace equivalence:

Lemma 4.11 Let L: C L D : R be an adjunction between stable categories, and let M : D°PQC —
Sp be exact. Then, the unit € and the counit 7 of the adjunction promote L and R to laced
functors Lys := (L, M o (id°? x ¢€)) and Ryps := (R, M o (n°P x id)) such that

(C,Mo(L®xid) . (D,Mo(id® x R))

are trace-inverses to one another.

Proof. What we have described is clearly a pair of laced functors, so it remains to check that
both composite are trace equivalent to the identity. The arguments for the two composites are
dual to each other, and so let us simply provide a commutative diagram

(C, M o (L° x id))

id
%

(C, M o (L°P x id)) —— (C, M o (L°P x id))((1)

—
RyroLs

(C, M o (L° x id))

exhibiting R o Lys as trace homotopic to id.

On underlying stable categories, we let H: C — CI! be the functor sending X to ex: (X —
RL(X)), and unpacking the definitions via Example the natural transformation we have to
supply is given on objects X,Y € C is of the form

M(L(X),Y) —— M(LRL(X),Y),
and so we take the map induced by pulling back in the first argument along the counit
noxy: LRL(X) —— L(X)

of L(X). The commutativity of the lower triangle is then by construction and the commutativity
of the upper triangle is provided by the triangle identities of the adjunction L 4 R. O

I Definition 4.12 A functor F: Cat'®® — & is trace-like if it inverts trace equivalences.
Our first result shows a simpler criterion to check that a functor is trace-like.
Proposition 4.13 Let F': Cat'*® — & be such that either of the two following conditions is met:
« For every laced category (C, M), F sends (C, M){[1]:*) LN (C, M) to an equivalence.

do

» For every laced category (C, M), F sends (C, M) — (C, M)(q1},+) to an equivalence.
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I Then, F' is trace-like. In particular, both of the above are realized.

Proof. First note that both conditions are implied by being trace-like, since both dy and dAO
are trace equivalences (see Example [4.10)). For the inverse implication, let us treat just the first
case, the second being dual. Let f: (C,M) — (D, N) be a trace-equivalence with trace-inverse
g: (D,N) — (C, M), and let H and H' be the two trace-homotopies to the identity. Since F' maps
dp to an equivalence by assumption and dg o H = id it follows that F' maps H to an equivalence,
and so also maps dy o H = go f to an equivalence. The same argument applied to H' shows I’
also inverts f o g. It follows that F(f) is an equivalence and so F is trace-like. O

Lemma 4.14 Let (C, M) be a laced category and p : [n] — [m] a map in A. The following maps
are trace equivalences:

1. p*:(C, M) — (¢, M)In)=)

Proof. We treat the first case, the second is dual. Trace equivalences are stable by composition
and if f is a trace equivalence and go f =id or fo g = id, then so is g. Hence, given the structure
of A, it is sufficient to treat the case of the injective maps 4, : [0] — [n] and i: [0] — [n] sending
0 € [0] to n € [n] and 0 € [n], respectively. We again treat just the first case, as the second is
dual. Consider the one-sided inverse p*: (C, M) — (¢, M)(":*) induced by the unique map
p: [n] — [0]. Tt then suffices to find a trace homotopy between the composite p* o i* and id.
Explicitly, this amounts a laced functor (C, M)(["*) — (€, M)(["Ix[:%) fitting in a commutative

diagram
(c, M)
//—)
do
)

(C,M)([”]”” SN (c,M)([n]X[lL*

d
(c, M)([n]-,*)_

But there is already such a commutative diagram at the level of posets:

[n] id

where H: [n] x [1] — [n] maps a tuple (k,7) to k if i = 0 and to n if i = 1. The functoriality of the
cotensor then concludes. O

As a consequence of Lemma the simplicial object (C, M)([*]:*) has its faces and degeneracies
being trace equivalences. Thus Proposition implies that F is trace-like if and only if it sends
the simplicial object (C, M)[*}*) to a constant simplicial object.

lace

Definition 4.15 Let £ be a category admitting geometric realizations and F': Cat — & a

functor. We let cyc(F') denote the functor given pointwise by the geometric realization
cye(F)(C, M) i= | F((C, M) 1)
The association F — cyc(F) upgrades to a functor cyc: Fun(Cat'™,£) — Fun(Cat'*, ),
which we call the cyclic bar construction functor. The inclusion of O-simplices provides a natural

transformation F' — cyc(F'), which is itself natural in F', hence providing a natural transformation
id = cyec.
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I Remark 4.16 We may reformulate Proposition as saying that uTHH =~ cyc(Lace™).

tlace

I Proposition 4.17 Let £ be a category admitting geometric realizations and F': Ca — €& a

functor. Then cyc(F') is trace-like.
Proof. Using Proposition we are reduced to showing that the simplicial map
F((C, M)UXI) — F((C, M)H),

induced by the inclusions [n] = {0} x [n] C [1] x [n], is an equivalence on geometric realizations.
This map has a one-sided inverse induced by the projections [1] x [n] — [n], and so it suffices to
show that the associated composite

F((C, M)WxIely s p((c, M)[1) —— F((C, M)[x[1)

is simplicially homotopic to the identity. Now note that any levelwise induced functor on simplicial
objects sends simplicial homotopies to simplicial homotopies, and so it will suffice to verify that the
corresponding composite map [1] x [e] — [¢] — [1] x [e] of simplicial objects in Cat®? is simplicially
homotopic to the identity. Explicitly, this means providing maps h;: [1] X [n + 1] = [1] X [n] for
1 =0,...,n satisfying suitable boundary relations. Unwinding the definitions, one can take

0k k<
}M@@{@w—n k>,

thus concluding the proof. O
Applying the above proposition to F' = Lace™ and using Remark we get

I Corollary 4.18 The functor uTHH: Cat™ — S is trace-like.

We now establish the universal property of the cyclic bar construction.

lace

Theorem 4.19 Let £ be a category admitting geometric realizations and F': Cat — & a
functor. Then the natural transformation ng: F = cyc(F) exhibits its target as the initial
trace-like functor under F.

Corollary 4.20 The natural transformation Lace™ = uTHH exhibits the latter as the initial
trace-like invariant under Lace™.

Remark 4.21 Since ¥5°: § — Sp commutes with the formation of the cyclic-bar construction, the
same applies to natural transformation of spectrum valued functors ¥3° Lace™ = X3° uTHH.

Proof of Theorem We first claim that for any F, the two arrows 7.y and cyc(nr)
are equivalent in the arrow category Fun(Cat'**®, £). For this, remark that

((QM)([mL*))([nL*) - (C’M)([m]x[n],*)

so that cyc(cyc(F)) can be viewed as the colimit of the bisimplicial object F(((C, M)([*1]x[¢21:%))
with the two maps 7cyc(ry and cyc(nr) are simply induced by the horizontal and vertical inclusions
in A x A. Thus, post-composing with the self equivalence induced by the flip involution A x
A — A x A switches between 7cyc(r) and cyc(nr), and so the two are equivalent objects in
Ar(Fun(Cat'** £)).

Now by Proposition we have that cyc(—) takes values in trace-like functors and from
Proposition we know that np is an equivalence for F' trace-like. This implies, on the one
hand, that the image of cyc consists exactly of trace-like functors, and on the other hand that the
two equivalent arrows 7.y and cyc(nr) are equivalences for any F'. The functor cyc(—) and the
natural transformation id = cyc(—) thus satisfy the localisation criterion of [Lur08, Proposition
5.2.7.4], and so the desired result follows. O
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4.3 The universal property of THH

In the previous section, we have shown that the natural transformation Lace™ = uTHH exhibits
uTHH as the initial trace-like functor under Lace™. In order to translate this knowledge to stable
THH we need to understand the natural transformation ¥5° uTHH = THH.

Let us first deal with a simple case: recall from [Lurl7, Section 6] that if F': C — D is a (not
necessarily exact) functor between stable categories such that D admits sequential colimits, then
there is a natural transformation F' — P1F whose target P, F is exact, and which is initial amongst
such transformations. We call P, F is the ezxact approrimation of F.

Lemma 4.22 Let C be a stable category, D and oo-category with finite limits, and F': C — Sp(D)
an exact functor. Then the natural transformation n: X°Q°F — I exhibits its target as the
exact approximation of its source.

Proof. Recall that the universal property of 2°°: Sp(D) — D implies that
(Q%).: Fun®™(C,Sp(D)) —— Fun™™(C, D)

is an equivalence, where FunLEx(—, —) denotes the oco-category of left exact (that is, finite limit
preserving) functors. In particular, for every exact G: C — Sp(D), the top horizontal arrow in the
diagram

Nat(F,G) ——=— Nat(Q®F, Q®G)

o | T

Nat(SQ%F, @) —— Nat(Q@SFO®F, Q*°G) —— Nat(Q°F, Q%G)

\—/

~

is an equivalence, where we note that the commutative triangle on the right is given by the triangle
identity of the adjunction ¥%° 4 Q°° and the bottom horizontal composite is an equivalence by
adjunction. We conclude that n* is an equivalence, yielding the desired result. O

Corollary 4.23 For a fixed stable category C, the natural transformation
Y uTHH(C, —) = THH(C, —)
of functors Bimod(C) — Sp exhibits its target as the exact approximation of its source.

Proof. By Lemma for each fixed X,Y € C, the map
S2Q®M(X,Y) — M(X,Y),

considered as a natural transformation of functors in the M entry, exhibits its target as the exact
approximation of its source (indeed, ev(x y) : M — M(X,Y) is exact and pre-composition with
exact functors preserves exact approximations).

By definition, the natural transformation X5 uTHH(C, —) = THH(C, —) is obtained by forming
the colimit ranging over (X — Y) € TwAr(C) of the above natural transformation. The formation
of exact approximations commutes with colimits since it is left adjoint to the inclusion of exact
functors into all functors, hence THH(C, —) is the exact approximation of ¥° uTHH(C, —), as
desired. O

To get the universal property when C varies, we need to introduce a fibered version of the exact
approximation. More formally, let us give the following definition:

Definition 4.24 Let £ be a stable category and F: Cat'®® — £ a functor. We say that F is

o fiberwise reduced if, for every stable C, the restriction F¢: Bimod(C) — £ is reduced, i.e.,
sends the zero bimodule to zero, and

o fiberwise exact if, for every stable C, the restriction F¢: Bimod(C) — £ is exact between
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I stable categories.
m Example 4.25 The functor THH: Cat'®®® — Sp is fibrewise exact. n

An important example of a fibrewise reduced functor (which is not fibrewise exact) is the
following.

Definition 4.26 The cyclic K-theory functor K¢: Cat'**® — Sp is defined by
K°(C, M) := cofib[K(C) — K'***(C, M)].

In fact, the passage from K'%°® to K¢ is an instance of a general procedure which yields a universal
fibrewise reduced replacement of a given functor on Cat!®®.

Definition 4.27 Let £ be a stable category and n: F = F' a natural transformation of functors
Cat'™® — £ We say that 7 exhibits F’ as the fibrewise reduced (resp. fibrewise exact)
approximation of F if F’ is fibrewise reduced (resp. fibrewise exact) and the initial such
functor under F.

In classical Goodwillie calculus, reduced approximations are realized by taking the comple-
ment F(X) of the direct summand F(0) of F(X), and exact approximation are realized by first
performing the reduced approximation F and then taking excisive approximation via the formula
colim,, Q"F (X" X). This requires the target to admit sequential colimits, and also works if the
target £ is not stable, as long as sequential colimits commute with finite limits (what is known as
being differentiable, see [Lurl7, Definition 6.1.1.6]). This idea still works in the bundled version,
as we now explain.

Lemma 4.28 Let £ be a pointed category and JF: Cat'®® — £ a functor. Then, F admits a

fibrewise reduced approximation F = F. Moreover, this natural transformation splits in the
following way, for every (C, M) € TCat™:

F(C, M) ~F(C,M)a F(C,0)

lace

Lemma 4.29 Let & be a stable category with sequential colimits and F: Cat®*® — £ a functor.
Then, F admits a fibrewise exact approximation F = P{P" F. Moreover, for each stable category
C, the induced natural transformation F|gimoed(c) = pibvr |Bimod(c) exhibits pibvF |Bimod(c) @S
the exact approximation of F.

Corollary 4.30 The inclusion Fun™"*(Cat'**®, £) C Fun(Cat'**°, £) of fibrewise exact functors
admits a left adjoint

PPY: Fun(Cat'*, £) — Fun™"*(Cat'**, &),

and this left adjoint is compatible with restriction along Bimod(C) C Cat'**® for every stable
category C.

Remark 4.31 Lemmas and tell us in particular that if F: Cat'®*® — £ is a functor to
a stable category £ with sequential colimits then J admits a fibrewise reduced approximation
F and a fibrewise exact approximation PV F satisfying

F(C,M)=F(C,0)a® F(C,M)

and o
PPV F(C, M) = colim Q" F(C, X" M).

Proofs of Lemmas and Consider the inclusion of the full subcategory spanned
by fibrewise reduced functors:

Fun, (Cat'**®, £) —— Fun(Cat'** &)
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tlace tEX

We want to show this functor admits a left adjoint. Since fgt: Ca — Cat™ is a cocartesian
fibration classifying Bimod(—), it follows from combining [Lur08, Corollary 3.2.2.13] and [GHN17,
Proposition 7.3] that this inclusion can be rewritten

[ (Un®* (Fun, (Bimod(~ ), £))) —— [(Un®*"*(Fun(Bimod(-), £)))

where Un®"*(F) denotes the cartesian fibration classifying a functor F', and I' denotes the categories
of sections of a given fibration. Applying the dual version of [HY17, Proposition 5.1] for cartesian
fibrations, we get that the existence of a left adjoint follows from the existence of a left adjoint
for each fibre and that the restriction of the global left adjoint recovers the fiberwise adjoint. The
claim and the formula now follow from the case n = 0 of [Lurl7, Lemma 6.1.1.33].

The proof of Lemma[£.29| follow the exact same logic as the argument above, considering instead
fibrewise exact functors instead of fibrewise reduced. Again, the pointwise claim and the formula
are classical and can be found as the case n =1 of [Lurl?, Lemma 6.1.1.33]. O

Corollary 4.32 Let F: Cat'®® — £ be a functor to a stable category with sequential colimits.
Then

« If F is additive then its fibrewise reduced approximation F and its fibrewise exact ap-
proximation P!V F are again additive.

o If F is trace-like then its fibrewise reduced approximation F and its fibrewise exact ap-
proximation PPV F are again trace-like.

Proof. In both cases this follows from the formulas in Remark 311

For (1), observe that if (A, N) C (C, M) D (B, P) is a laced semi-orthogonal decomposition then
(A,0) C (C,0) D (B,0) is a laced semi-orthogonal decomposition and (A,X"N) C (C,X"M) D
(B,X™P) is a laced semi-orthogonal decomposition for every n € Z.

Similarly, for (2) we point out that if (C, M) — (D, M) is a trace equivalence then (C,0) — (D, 0)
is a trace equivalence and (C,X"M) — (D, X" N) is a trace equivalence for every n € Z. O

Combining Lemma [£.29) with Corollary [£.23] we deduce:

Corollary 4.33 The natural transformation ¥ uTHH = THH exhibits THH as the fibrewise
exact approximation of X5 uTHH.

Combining Corollary £:21] Corollary [£:33] and Corollary [£:32] we now conclude:

Corollary 4.34 The fibrewise exact functor THH is trace-like, and the natural transformation
¥° Lace™ = THH exhibits THH as the initial fiberwise exact trace-like functor under its
source.

Remark 4.35 Let £ be a stable category with sequential colimits. By Corollary the fibre-
wise exact approximation operation on Fun(Cat'®®, £) preserves trace-like functors. At the
same time, it follow from directly from its explicit formula that the cyclic Bar construction
cyc of Definition [£.15] preserves fibrewise exact functors. We conclude that, as two left Bous-
field localisations of Fun(Cat'**, £), fibrewise exact approximation and cyclic Bar construction
commute with each other, and their composite cyc oPﬁbW = P{bw o cyc is a left Bousfield local-
isation of Fun(Cat'**® €) whose local objects are the fibrewise exact trace-like functors. By
Corollary [£:34 we then have that

THH = PP cyc(2%° Lace™) = cyc PPV (Z%° Lace™).
Explicitly, PPV (2° Lace™) is given by

PPW5i% Lace™(C, M) = colém M (z, )
zeC™=
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and the identification THH = cyc P?W(Ef Lace™) yields a bar construction type formula

THH(C, M) ~ | ... =—¢ colim_mape (X, Y) ® M(Y, X) —=} colim M(X, X)

)

for THH. We may view P{bW(Ef Lace™) as some naive categorification of the trace of a matrix,
whereas THH is an actual trace: the trace of M seen as an endomorphism of the dualizable
IndC in Pry,, by [HSSI7, Proposition 4.5].

4.4 The trace map and the Dundas-McCarthy theorem
Our goal in this section is to construct a canonical trace map
K'*¢(C, M) — THH(C, M)

in the setting of laced categories and show that it exhibits THH(C, —) as the exact approximation
(or first Goodwillie derivative) of KZ“CG(C, —), thus generalizing the Dundas-McCarthy theorem
from [DM94] to the setting of stable categories.

As in the non-laced setting, the trace map can be constructed using the universal property of
K!?. More precisely, we have shown in Theore that the natural transformation X Lace™ =
K!e¢¢ exhibits laced K-theory as the initial additive invariant under ¥ Lace™. At the same time,
we have a natural transformation ¥5° Lace™ = THH, which we used in Corollary to endow
THH with a universal property. To construct the trace map it will then suffice to verify that THH
is additive (as a functor on Cat'**®). More generally, we show the following:

Proposition 4.36 Let £ be a stable category and F: Cat'®® — £ a fiberwise exact trace-like
functor. Then F is additive.

Remark 4.37 The proof of Proposition is an adaptation of a classical argument, notably
found in [Kall5l Section 5.2] who describes it as the gist of the proof of the localization theorem
for Hochschild homology proven by [Kel98]. A close variant of this argument also appears in
[HSS17, Theorem 3.4].

I Corollary 4.38 The functor THH: Cat'**® — Sp is additive.

Proof of Proposition [4.36,  Let (4,N) C (C,M) 2 (B, P) be a laced semi-orthogonal
decomposition with i: A — C and j: B — C denoting the inclusions. Denote by ¢ the right adjoint
of 7; Lemma applied to ¢ 4 ¢ and the bimodule M o (id xi) gives a trace equivalence

(A, N) —— (C, M o (id x1iq))

and from the triangle identities we see that the laced full inclusion (i, «): (A, N) — (C, M) factors
as follows:
(id,&)

(A, N) —— (C, M o (id°? x iq)) (C, M)

where & is induced by the counit ig — id. Dually, if we write p: C — B for the left adjoint of j
then by Lemma it canonically refines to a laced functor (p,n): (C, M) — (B, P), and we have
a similar factorization of (p,7) as a composite

(id,B)
E—

(C,M) (C, M o (id°? x jp))) — (B, P)

where the second functor is obtain from the construction of Lemma and /3’ is induced by the
unit id = jp. Putting these two factorizations together yields a commutative diagram

(A N) — ey — 20 (8P
(C, M o (id x iq)) =21y (¢, a) 2205 (¢, M o (10 x jp))
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where the bottom horizontal sequence is exact in Bimod(C) = Cat'™® x qu6<{C} (since the se-
quence iqg — id — jp is exact) and the vertical maps are trace equivalences. Since F is exact
on each fibre and inverts trace equivalences, it follows that the top row is also sent to an exact
sequence, which concludes. O

Having established that THH is additive, the universal property of Theore implies that the
natural transformation 35° Lace™ = THH extends essentially uniquely to a natural transformation

tr: K'e¢ = THH,
which we call the laced trace map.

Remark 4.39 The original trace map on the level of Cat®™ can recovered from the one above as
the composite
K(C) — K'**(C, map) — THH(C, map) = THH(C).

Indeed, this follows from the uniqueness of both trace maps together with the fact that the
composed natural map

¥PC™ — X Lace™(C, map) — THH(C, map) = THH(C)
is the one used to construct the trace map in [BGT13].

We now remark that under even less hypotheses on F, additivity implies trace-like.

Proposition 4.40 Let & be a pointed category and F: Cat'®® — & a functor which is fiberwise
reduced and additive. Then F is trace-like.

Proof. By Lemma we have a laced semi-orthogonal decomposition (C,0) C (C, M)+ D
(C, M), where the right hand category is embedded via the laced functor s: (C, M) — (C, M),
In the composite

F(C, M) — F(C,M) @ F(C,0) — F((C, M)M))

the first map is an equivalence by the assumption that F is fibrewise reduced and the second an
equivalence by the assumption that F is additive. Hence the composite is an equivalence so that
F is trace-like by Proposition O

Combining Proposition and Proposition we get:

Corollary 4.41 Let £ be a stable category and F: Cat'®® — £ a fiberwise exact functor. Then
F is additive if and only if F is trace-like.

The following generalization of the Dundas-MacCarthy theorem is one of the main results of
the present paper:

Theorem 4.42 — Stable K-theory is THH. The trace map tr: K!°® = THH exhibits THH as the
initial fiberwise exact functor under K!“®. In particular, on the fibre over each stable C, the
first Goodwillie derivative of the functor K(Lace(C,—)) is THH(C, —).

Proof. Combining Proposition and Corollary and Theorem we conclude that the
map K'*® = THH exhibits THH as the initial fibrewise exact additive functor under K'*°®. This
must coincide with the fibrewise exact approximation of K'e¢ since K is additive and fibrewise
exact approximation preserves additive functors, see Corollary O]

One may wonder if THH is also the universal trace-like functor under K. This is false: the
trace-like approximation of K actually coincides with its fibrewise reduced approximation, namely,
with cyclic K-theory.

I Proposition 4.43 The cyclic K-theory functor K¢ is the initial trace-like functor under K'°.

Proof. First note that K<€ is trace-like by Propositionm Now let G: Cat'®*® — Sp be some

36



trace-like functor. We wish to show that the restriction map
Nat(K%°, G) — Nat(K'**, G)

is an equivalence. Since Cat'**® admits a zero object (0,0) given by the zero stable category
equipped with the zero bimodule we may decompose G canonically as a direct sum G := Gy @ FE
where E := G(0,0) € Sp and Gy vanishes on (0,0). At the same time, both K'*°* and K¢ vanish
n (0,0), and hence map trivially to any constant functor. It will then suffice to show that the
restriction map
Nat(K°, Go) — Nat (K", Go)

is an equivalence. For this, note that since Gy ~ fib[G = G(0,0)] we have that Gy is trace-like. But
by Lemma any map in Cat'®® of the form (0,0) — (C,0) is a trace equivalence, and since
Go(0,0) = 0 we conclude that Gy is fibrewise reduced. The desired result thus follows from the fact
that K¢ is the fibrewise reduced approximation of K'%“*, see Lemma O

5 Trace invariant functors

5.1 Flavours of Verdier sequences

We dedicate this section to discussing some analogues of Verdier and Karoubi sequences in the
laced setting.

(p B)

I Definition 5.1 A sequence (A, N) (C M) —= (B, P) is a naive Verdier sequence if it is

a fibre and a cofibre sequence in Catlacc.

By Proposition [2.3] and Remark 2:4] being a naive Verdier sequence amounts to the following
conditions:

e The sequence of stable categories A — C — B is a Verdier sequence.

o The natural transformation o: N = Mo (i°? x i) and 3: (p°° x p);M = P are equivalences,
where ﬂ is the mate of f.

m Example 5.2 If A — C — B is a Verdier sequence in Cat™ then

(A7 map.A) — (Cvmapc) — (Bv mapB)
is a naive Verdier sequence in Cat'®°. n

I Definition 5.3 A functor Cat'®® — & with stable target is said to be Verdier localizing if it is
reduced and sends naive Verdier sequences to exact sequences in £.

Unlike in the split case, it need not be that Lace sends naive Verdier sequences to Verdier
sequence, and so there is no reason to expect that K!%¢ = K o Lace would be Verdier localising.

Definition 5.4 A sequence (A4, N) — o), (C,M) —= A, (B, P) is a fine Verdier sequence if it is a

naive Verdier sequence such that the following condition holds:

e For every n > 0, the sequence
Lace(A, X" N) —— Lace(C, X" M) —— Lace(B, X" P)
is a Verdier sequence of stable categories.

A functor Cat'®®® — £ with stable target is said to be weakly Verdier localizing if it is reduced
and sends Verdier sequences to exact sequences in .

m Example 5.5 If (4, N) C (C,M) D (B,P) is a laced semi-orthogonal decomposition then the
naive Verdier sequence

(A, N) (C M) (B P)
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furnished by Lemma is a fine Verdier sequence. Indeed, by Proposition (and its proof) this
sequence is sent by Lace to a right-split Verdier sequence, and this persists under shifting since
laced semi-orthogonal decompositions are stable under shifts. [

By definition, every Verdier localising functor is weakly localising. In addition, by Example[5.5]
any weakly Verdier localising functor is additive.

Proposition 5.6 The functor K'*°: Cat'®® — Sp is weakly Verdier localizing. Consequently,
by Theorem it is also the initial such functor under ¥5° Lace™.

Proof. This follows directly from the fact that K: Cat™ — Sp is Verdier localizing (see for
instance [Sau23al, Theorem 3.13] or [HLS23|, Theorem 6.1]). O

Remark 5.7 If (A, N) — (C, M) — (B, P) is a naive (resp. fine) Verdier sequence in Cat'**® then
(A,0) — (C,0) — (B,0) is a naive (resp. fine) Verdier sequence and (A,X™N) — (C,X"M) —
(B,X"P) is a naive (resp. fine) Verdier sequence for every n € Z. It then follows from Re-
mark that if F — & is a (weakly) Verdier localising functor to a stable category with
sequential colimits then PPV F is again (weakly) Verdier localising.

I Corollary 5.8 The functor THH: Cat'**® — Sp is weakly Verdier localising.

We finish this subsection by discussing an example of fine Verdier projections not arising from
laced semi-orthogonal decompositions.

m Construction 5.9 Let A, B be two stable co-categories and N: A°P x B — Sp, M : B°? x A — Sp
two bimodules. Write Tps: Ind(A) — Ind(B) and Ty : Ind(B) — Ind(A) for the associated colimit
preserving functors, so that M(b,a) = map(b, Tas(a)) and N(a,b) = map(a,Tn(b)). Consider the
pairing category Pair(.A, B; N), which sits in a fibre square

Pair(A, B; N) ——— Ar(Ind(A))

| |

Ax B 9T 1d(A) x Ind(A)
It fits in a bifibration made of two Verdier projections
A & Pair(A,B,N) 2 B,

where ¢ is a cartesian fibration and p a cocoartesian one. Write M = (p°P x q)*M. Since both p
are q are Verdier projections the associated comonads pip* and ¢¢* are equivalent to the respective
identities, and so

(p°P x p) M = (id°P xp)(id°P xq)* M = M o N € Bimod(B)

and
(¢°° x g M = (¢°P x id),(p°? x id)*M = N o M € Bimod(A).

The functors p and ¢ then upgrade to a pair of laced functors

(A, N o M) <% (Pair(A, B; N), M) 2 (B, M o N). (9)

I Proposition 5.10 Both projections in @ are fine Verdier projections.

Proof. We prove the claim fro p, the proof for ¢ is dual. To begin, note that the underlying
exact functor p is a left-split Verdier projection and that its laced upgrade p is by construction a
cocartesian arrow of Cat'®°®. Extending p by its kernel (.4, 0) hence yields a naive Verdier sequence
in Cat'®°. Up to shifting M, it will now suffice to show that the sequence

A = Lace(A,0) — Lace(Pair(A, B; N), M)) — Lace(B, M o N) (10)
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is a Verdier sequence for any choice of input data A, B, M, N. Write
Nina = mapp,q()(—, In(-)): Ind(A)°? x Ind(B) — Sp

and
Mg = maplnd(B)(—,T]\/[(—)): Ind(B)Op X Ind(A) — Sp

for the corresponding Ind extensions of M and N, so that we have a bifibration
Ind(A) <24 Pair(Ind(A), Ind(B), Niaa) 222 Ind(B)

as above. Consider the commutative diagram

Ind(A) —— Ind(Lace(Pair(A, B; N),M)) [nd(@) Ind(Lace(B, M o N))
A)

| i (11)

Ind(A) — Lace(Pair(Ind(A), Ind(B); Nina), Mina) —=% Lace(Ind(B), Mg © Nina)

where Z\an = (plorﬁ)d X nd)*Ming is obtained from Mi,q in the same manner that M was obtained
from M above. Here, both rows are fibre sequences and the vertical arrows are all fully-faithful
embeddings (since underlying-compact laced objects are compact, and similarly for paired objects).
In addition, the bottom row in this diagram is a right-split Verdier sequence: indeed, a fully-faithful
right adjoint to pryq is given by the functor

Lace(Ind(B), Ming © Nina) —— Lace(Pair(Ind(A), Ind(B); Nina), Mind)

(b,8:b—= Ty (Tn(b))) ((T'w(b),b,id), B).

We claim that r sends the image of the right most vertical inclusion in to the image of the
middle vertical inclusion, thus yielding a fully-faithful right adjoint to the bottom right horizontal
map. This will imply that the sequence is a Karoubi sequence by |[CDH™23bl Appendix A],
and hence a Verdier sequence once we verify in addition that p is essentially surjective.

We now address the above claims about r and p. We establish both of them at the same time,
by showing that for (b, 8: b — T (Tn(b))) € Lace(B, M o N), the object r(b) = ((Tn(b),b,id), §)
can be written as a filtered colimits of objects in Lace(Pair(A, B; N), M), in such a way that the
image in Lace(B, M o N) of the corresponding filtered diagram is constant on b. For this, note
that the pair (Tn(b),3) determines an object z € Z := Ind(A) Xqs) Ind(B),/, and that to
obtain the type of diagram we want it will suffice to write z as a filtered colimit of objects in
Zy = A Xmma(B) Ind(B), /- More precisely, we claim that the canonical map

colim 2 — 2z
[z/—=z]€(Z0)

is an equivalence. Now since the projection £ — Ind(A) is conservative and preserves filtered
colimits and since every object in Ind(A) is the colimit of its corresponding canonical diagram
in A the desired result will now follow once we show that the projection 7: (2o),. — A1y @)
is cofinal. Now since A, ) is filtered the projection A,/ 1y ®m) — A/ry @) is cofinal for every
a — Tn(b) € A;ry 1), and since in addition 7 is a left fibration the cofinality of 7 is equivalence to
the weak contractibility of (Zo),.. This, in turn, is equivalent to the statement that the inclusion
(20)/. € Z/, is a weak homotopy equivalence, since Z/, is itself weakly contractible. This inclusion
fits in pullback square

(20)): ——— 22

| |

A/TN(b) —_— Ind(A)/TN(b)

where the vertical maps are left fibrations, both classified by the functor

la = Tn(b)] = Map(b, Tn (@) X Map(b, 70 (T (8))) 157}
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where for the left vertical map a is understood to be in A, while in the right vertical map it
is taken in Ind(A). Since this formula is compatible with filtered colimits in a we see that the
functor classifying the right vertical left fibration is left Kan extended from the one classifying the
left vertical fibration. We hence conclude that the top horizontal map is a weak equivalence, as
desired. O

5.2 Trace invariance of THH

We have shown that THH is trace-like and from [HSS17], we know that it is actually the trace in the
category PrIFjX of presentable stable categories and left adjoint functors. Note however that being
trace-like need not imply the usual trace invariance property. In this last section, we introduce
and study the latter notion.

Definition 5.11 Let € be a category and F: Cat'®® — & a functor. We say that F is trace-
invariant if it sends the two laced functors in @ to equivalences for every A, B, N and M.

In particular, if F: Cat'®® — £ is a trace-invariant functor then for any A, B, M, N as in

Construction [5.9 we have a distinguished equivalence
F(A,No M)~ F(B,MoN)

More generally, by composing the Pair constructions, one gets distinguished equivalences showing
that trace-invariant F are invariant under cyclic permutations in the bimodule coordinate.

Remark 5.12 Taking N to be the identity module in Construction [5.9] it follows from Proposi-
tion that every trace-invariant functor is also trace-like.

I Definition 5.13 We will say that an arrow in Cat®® is a weak trace equivalence if it is sent to
an equivalence by any trace-invariant functor.

By Remark we have that any trace equivalence (in the sense of Definition {4.9)) is a weak
trace equivalence in the above sense.

Remark 5.14 In the situation of Construction if the bimodule N is left representable by an
exact functor f: A — B (that is, N = Qs = mapg(f(—),—)), then the laced functor ¢ in (9]
admits a section of the form

(A,Qf o M) — (Pair(A,B,Qp), M) =+ (w, f(),id).
The composite of this section with p then yields a laced functor
Fi (A,Qpo M) — (B, MoQy) (12)

whose underlying exact functor is f. We conclude that the resulting fis a weak trace equiva-
lence. Dually, if the bimodule N is right representable by an exact functor g: B — A (that is,
N = Q4 = map 4(—, g(—))), then the laced functor p in @I) admits a section of the form

(B, M 0 Qg) — (Pair(A, B,Qy), M) y = (g(y),y,id).
The composite of this section with ¢ then yields a laced functor
g: (B,MoQg) — (A ,Qqgo M) (13)
whose underlying exact functor is g. We then similarly have that g is a weak trace equivalence.

We now show that for fibrewise exact invariants, the difference between weakly Verdier localising
and Verdier localising vanish.

lace

Proposition 5.15 Let £ be a stable co-category and F: Cat*“® — £ a fibrewise exact functor.

Then the following are equivalent:
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1. F is Verdier localising.
2. F is weakly Verdier localising.
3. F is trace-invariant.

In fact, the implication (2) = (3) holds for any fibrewise reduced F.

Proof. Clearly (1) = (2) for any F, and (2) = (3) for any fibrewise reduced F since the two
arrows in ([9) are fine Verdier projections (Proposition [5.10)) whose kernels have zero bimodules.
We now show that (3) = (1). Let F: Cat'™® — & be a fibrewise exact and trace-invariant functor

and
(A, M) (B,N) L (c,P)

a naive Verdier sequence in Cat'*®. Then P = (p°? x p)|N = QpoNo Qp and M = (i°? xi)*N =
Q0N oQ;, where Qp = map 4(—,p(—)), Qp = map 4(p(—), —) are the two bimodules left and right
represented by p, and similarly for Q; and Q;. We may then place this sequence in a commutative
diagram of the form

(A, QioNoQ®;) —— (B,N) —— (C,Qy0oNoQy)

! | I

(B,NoQioQ;) — (B,N) — (B,NoQ,0Q,)

where the vertical arrows are weak trace equivalences by Remark and are hence sent to
equivalences by F. Since F sends the lower sequence to an exact sequence by virtue of being
fibrewise exact we conclude that F sends the top sequence to an exact sequence, as desired. O

Combining Proposition and Remark we conclude that the functor THH: Cat'®*® — Sp
is not just trace-like but actually trace-invariant. By the universal property of Corollary we
thus obtain:

Corollary 5.16 The composed map
¥ ¥ Lace = ¥ uTHH = THH
exhibits THH as initial among fibrewise exact trace-invariant functors under ¥>°°: Lace..
Similarly, combining Propositions [5.15] and [£.43] we conclude:

Corollary 5.17 The cyclic K-theory functor K¢ is trace-invariant and the map K'*¢ = K¢
exhibits it as the initial trace-invariant functor under K.

5.3 Trace maps for arbitrary Verdier localising functors

In this section we generalize the construction of the trace map tr: K = THH to arbitrary Verdier
localising functors F: Cat™ — £ with stable presentable targets.

Definition 5.18 Let £ be a stable presentable co-category and F: Cat™ — £ a functor. We let
Flace: Cat'™® — £ be the functor given by Flc¢(C, M) = F(Lace(C, M)), and write

dF: Cat®* — &

for the fibrewise exact approximation of F!@ce,

Proposition 5.19 Let £ be a stable presentable co-category. If F: Cat™ — & is a Verdier
localising functor then dF: Cat'®® — £ is trace-invariant. On the other hand, if G: Cat'**® —
€ is a trace-invariant and fibrewise exact functor then the functor C — G(C,map) is Verdier
localising.

Proof. We begin with the first claim. Since F is Verdier localising we have that F'°¢ is weakly
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Verdier localising. By Remark we then have that dF is weakly Verdier localising, and so also
trace-invariant by Proposition [5.15

Now let G: Cat'®® — € be a trace-invariant and fibrewise exact functor. Then by Proposi-
tion we have that G is Verdier localising, and so G(—, map) is Verdier localising by Exam-

ple 5.2} O

Proposition [5.19| implies that the composite

Lace™ Pﬁbw*
Fun(Cat"™, £) L Fun(Cat'*,€) _1 Fun™"(Cat"*, ¢)
I —

of the adjunction induced via pre-composition from the adjunction L - Lace of Proposition [2.7]
and the adjunction of Corollary [£.30] restricts to an adjunction

d: Fun“*" (Cat™, &) L Fun™™"**(Cat'** &) : L*

where on the left we have the co-category of Verdier localising functors Cat®™ — &£ and on the

right the oo-category of trace-invariant fibrewise exact functors Cat'**® — £. We then write
d:=L* od: Fun"*"(Cat™, &) — Fun"*"(Cat™, &)

for the composite of the adjoint pair. By construction, & is a monad on Fun“*"(Cat™¢&).

Definition 5.20 Given a Verdier localising functor F: Cat™ — &, we call the unit

trr: F = OF
the trace map associated to F.
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